chapter 4 problem statement
play

Chapter 4: Problem Statement CK Cheng Dept. of Computer Science and - PowerPoint PPT Presentation

CSE203B Convex Optimization: Chapter 4: Problem Statement CK Cheng Dept. of Computer Science and Engineering University of California, San Diego 1 Convex Optimization Formulation 1. Introduction I. Eliminating equality constants II. Slack


  1. CSE203B Convex Optimization: Chapter 4: Problem Statement CK Cheng Dept. of Computer Science and Engineering University of California, San Diego 1

  2. Convex Optimization Formulation 1. Introduction I. Eliminating equality constants II. Slack variables III. Absolute values, softmax 2. Optimality Conditions I. Local vs. global optimum II. Optimality criterion for differentiable ๐‘” 0 i. Optimization without constraints ii. Opt. with inequality constraints iii. Opt. with equality constraints III. Quasi-convex optimization 3. Linear Optimization 4. Quadratic Optimization 5. Geometric Programming 6. Generalized Inequality Constraints 2

  3. 1. Introduction Formulation: One of the most critical processes to conduct a project. min ๐‘” 0 (๐‘ฆ) ๐‘ก. ๐‘ข. ๐‘” ๐‘— ๐‘ฆ โ‰ค 0 ๐‘— = 1, โ€ฆ , ๐‘› โ„Ž ๐‘— ๐‘ฆ = 0 ๐‘— = 1, โ€ฆ , ๐‘ž (๐ต๐‘ฆ = ๐‘ Affine set) ๐‘ฆ โˆˆ ๐‘† ๐‘œ 0 : ๐‘† ๐‘œ โ†’ ๐‘† ๐ธ 0 ๐‘” ๐‘” ๐‘— : ๐‘† ๐‘œ โ†’ ๐‘† ๐ธ ๐‘” ๐‘— ๐‘” ๐ธ โ„Ž ๐‘— โ„Ž ๐‘— : ๐‘† ๐‘œ โ†’ ๐‘† ๐‘” 0 , ๐‘” ๐‘— , โ€ฆ , ๐‘” ๐‘› ๐‘๐‘ ๐‘“ ๐‘‘๐‘๐‘œ๐‘ค๐‘“๐‘ฆ ๐ธ =โˆฉ ๐‘—=0,๐‘› ๐ธ ๐‘” โˆฉ ๐‘—=0,๐‘ž ๐ธ โ„Ž ๐‘— Domain of functions, but not the feasible set. Feasible Set: The set which satisfies the constraints (is convex for convex problems). 3

  4. 1.1 Introduction: Eliminating Equality Constraints min ๐‘” 0 (๐‘ฆ) ๐‘ก. ๐‘ข. ๐‘” ๐‘— ๐‘ฆ โ‰ค 0 ๐‘— = 1, โ€ฆ , ๐‘› ๐ต๐‘ฆ = ๐‘ Convert ๐‘ฆ ๐ต๐‘ฆ = ๐‘ ๐‘ข๐‘ ๐บ๐‘จ + ๐‘ฆ 0 ๐‘จ โˆˆ ๐‘† ๐‘™ a. b. We have a equivalent problem min ๐‘” 0 (๐บ๐‘จ + ๐‘ฆ 0 ) ๐‘ก. ๐‘ข. ๐‘” ๐‘— ๐บ๐‘จ + ๐‘ฆ 0 โ‰ค 0 Remark: Matrix ๐บ contains columns of null space basis 4

  5. 1.2 Introduction: Slack Variables min ๐‘” 0 (๐‘ฆ) ๐‘ก. ๐‘ข. ๐‘” ๐‘— ๐‘ฆ โ‰ค 0, ๐‘— = 1, โ€ฆ , ๐‘› ๐ต๐‘ฆ = ๐‘ Add slack variables to convert to an equivalent problem a. Convert the objective function with variable t min ๐‘ข ๐‘ก. ๐‘ข. ๐‘” 0 ๐‘ฆ โˆ’ ๐‘ข โ‰ค 0 ๐‘” ๐‘— ๐‘ฆ โ‰ค 0 , ๐‘— = 1, โ€ฆ , ๐‘› ๐ต ๐‘ˆ ๐‘ฆ = ๐‘ b. Convert the inequality with variables ๐‘ก ๐‘— min ๐‘” 0 (๐‘ฆ) ๐‘ก. ๐‘ข. ๐‘” ๐‘— ๐‘ฆ + ๐‘ก ๐‘— = 0 ๐ต ๐‘ˆ ๐‘ฆ = ๐‘ ๐‘ก ๐‘— โˆˆ ๐‘† + , ๐‘— = 1, โ€ฆ , ๐‘› 5

  6. 1.3 Introduction: Absolute values and Softmax a. Absolute values ๐‘” ๐‘— (๐‘ฆ) โ‰ค ๐‘ โ‡’ ๐‘” ๐‘— ๐‘ฆ โ‰ค ๐‘ ๐‘๐‘œ๐‘’ โˆ’๐‘” ๐‘— ๐‘ฆ โ‰ค ๐‘ b. Maximum values max{๐‘” 1 , ๐‘” 2 , โ€ฆ , ๐‘” ๐‘› } 1 1 + ๐‘“ ๐›ฝ๐‘” 1 + โ‹ฏ + ๐‘“ ๐›ฝ๐‘” ๐›ฝ log ( ๐‘“ ๐›ฝ๐‘” Soft๐‘›๐‘๐‘ฆ: ๐‘› ) ๐น๐‘ฆ๐‘๐‘›๐‘ž๐‘š๐‘“: max{1, 5, 10, 2, 3} โ‡’ Softmax 1 ๐›ฝ log(๐‘“ ๐›ฝ + ๐‘“ 5๐›ฝ + ๐‘“ 10๐›ฝ + ๐‘“ 2๐›ฝ + ๐‘“ 3๐›ฝ ) โ‰ˆ 10 6

  7. าง 2.1 Optimality Conditions: Local vs. Global Optima Definition: Local Optima ๐‘ฆ โˆˆ ๐‘† ๐‘œ Given a convex optimization problem and a point าง If there exists a ๐‘  > 0 ๐‘ก. ๐‘ข. ๐‘” 0 ๐‘จ โ‰ฅ ๐‘” ๐‘ฆ for all ๐‘จ โˆˆ Feasible Set, and ๐‘จ โˆ’ าง ๐‘ฆ 2 โ‰ค ๐‘  0 Then าง ๐‘ฆ is a local optimum . 7

  8. าง าง าง าง าง 2.2 Optimality Conditions Theorem: Given a convex opt. problem If าง ๐‘ฆ is a local optimum, then าง ๐‘ฆ is a global optimum Proof: By contradiction Suppose that โˆƒ๐‘ง โˆˆ ๐บ๐‘“๐‘๐‘ก๐‘—๐‘๐‘š๐‘“ ๐‘‡๐‘“๐‘ข ๐‘ก. ๐‘ข. ๐‘” ๐‘ฆ > ๐‘” 0 ๐‘ง 0 We have ๐‘” ๐‘ฆ > 1 โˆ’ ๐œ„ ๐‘” ๐‘ฆ + ๐œ„๐‘” 0 เดค ๐‘ง ๐‘๐‘ง ๐‘๐‘ก๐‘ก๐‘ฃ๐‘›๐‘ž๐‘ข๐‘—๐‘๐‘œ 0 0 > ๐‘” 0 ( 1 โˆ’ ๐œ„ ๐‘ฆ + ๐œ„เดค ๐‘ง) ๐‘” 0 ๐‘—๐‘ก ๐‘‘๐‘๐‘œ๐‘ค๐‘“๐‘ฆ And 1 โˆ’ ๐œ„ ๐‘ฆ + ๐œ„เดค ๐‘ง is feasible (Feasible set is convex) The inequality contradicts to the assumption of local optima. 8

  9. 2.2 Optimality Criterion for Differentiable ๐‘” 0 ๐‘ฆ 0 ๐‘ฆ ๐‘ˆ ๐‘ง โˆ’ ๐‘ฆ โ‰ฅ 0 , for a given ๐‘ฆ โˆˆ Feasible Set Theorem: If ๐›ผ๐‘” and for all ๐‘ง โˆˆ Feasible Set, then ๐‘ฆ is optimal . 0 ๐‘ฆ โˆˆ ๐ฟ โˆ— ) ( i. e. ๐ฟ = ๐‘ง โˆ’ ๐‘ฆ ๐‘ง โˆˆ ๐‘”๐‘“๐‘๐‘ก๐‘—๐‘๐‘š๐‘“ ๐‘ก๐‘“๐‘ข , โˆ‡๐‘” Proof: From the first order condition of convex function, we 0 ๐‘ฆ ๐‘ˆ (๐‘ง โˆ’ ๐‘ฆ) . have ๐‘” 0 ๐‘ง โ‰ฅ ๐‘” 0 ๐‘ฆ + ๐›ผ๐‘” ๐‘ˆ ๐‘ฆ Given the condition that ๐›ผ๐‘” ๐‘ง โˆ’ ๐‘ฆ โ‰ฅ 0, โˆ€๐‘ง in feasible set . 0 We have ๐‘” 0 ๐‘ง โ‰ฅ ๐‘” 0 ๐‘ฆ , โˆ€๐‘ง in feasible set, which implies that ๐‘ฆ is optimal. ๐‘ˆ ๐‘ฆ Remark: ๐›ผ๐‘” ๐‘ง โˆ’ ๐‘ฆ = 0 is a supporting hyperplane to 0 feasible set at ๐‘ฆ . 9

  10. 2.2.1 Optimality Criterion without Constraints 0 ๐‘ฆ , ๐‘ฆ โˆˆ ๐‘† ๐‘œ , where ๐‘” Theorem: For problem min ๐‘” 0 is convex, the optimal condition is โˆ‡๐‘” 0 ๐‘ฆ = 0. Proof: ( โˆ‡๐‘” 0 ๐‘ฆ = 0 โ‡’ Optimality) 0 ๐‘ฆ ๐‘ˆ ๐‘ง โˆ’ ๐‘ฆ , โˆ€๐‘ฆ, ๐‘ง โˆˆ ๐‘† ๐‘œ (first order Since ๐‘” 0 ๐‘ง โ‰ฅ ๐‘” 0 ๐‘ฆ + ๐›ผ๐‘” condition of convex function) We have ๐‘” 0 ๐‘ง โ‰ฅ ๐‘” 0 ๐‘ฆ . Therefore, x is an optimal solution. ( โˆ‡๐‘” 0 ๐‘ฆ = 0 โ‡ Optimality) By contradiction 10

  11. าง าง าง 2.2.2 Opt. with Inequality Constraints Problem: Min ๐‘” 0 ๐‘ฆ s.t. ๐ต๐‘ฆ โ‰ค ๐‘ , ๐ต โˆˆ ๐‘† ๐‘›ร—๐‘œ Suppose that ๐ต าง ๐‘ฆ = ๐‘ (one particular case). Let ๐‘ฆ = าง ๐‘ฆ + ๐‘ฃ . We can write แ‰Š min ๐‘” ๐‘ฆ + ๐‘ฃ 0 ๐ต๐‘ฃ โ‰ค 0 0 ๐‘ฆ ๐‘ˆ ๐‘ฃ โ‰ฅ 0, โˆ€{๐‘ฃ|๐ต๐‘ฃ โ‰ค 0} โ‰ก ๐ฟ Opt. condition : ๐›ผ๐‘” In other words , ๐‘ฆ โˆˆ ๐ฟ โˆ— ๐‘๐‘” ๐ฟ = ๐‘ฃ ๐ต๐‘ฃ โ‰ค 0 ๐‘๐‘œ๐‘’ ๐ฟ โˆ— = {โˆ’๐ต ๐‘ˆ ๐‘ค|๐‘ค โ‰ฅ 0} ๐›ผ๐‘” 0 ๐‘ฆ = โˆ’๐ต ๐‘ˆ ๐‘ค , โˆƒ๐‘ค โˆˆ ๐‘† + ๐‘› i.e. ๐›ผ๐‘” 0 ๐‘ฆ) + ๐ต ๐‘ˆ ๐‘ค = 0, ๐‘ค โ‰ฅ 0. ๐›ผ๐‘” 0 ( าง 11

  12. าง าง าง 2.2.3 Opt. with Equality Constraints แ‰Š min ๐‘” 0 ๐‘ฆ ๐‘ก. ๐‘ข. ๐ต๐‘ฆ = ๐‘ Let ๐‘ฆ = าง ๐‘ฆ + ๐‘ฃ and ๐ต าง ๐‘ฆ = ๐‘, we have แ‰Š min ๐‘” ๐‘ฆ + ๐‘ฃ 0 , ๐ฟ = {๐‘ฃ|๐ต๐‘ฃ = 0} ๐ต๐‘ฃ = 0 ๐‘ฆ โˆˆ ๐ฟ โˆ— , ๐ฟ โˆ— = {๐ต ๐‘ˆ ๐‘ค|๐‘ค โˆˆ ๐‘† ๐‘ž } ๐›ผ๐‘” 0 ๐‘ฆ + ๐ต ๐‘ˆ ๐‘ค = 0 ๐›ผ๐‘” 0 Let ๐ฟ 1 = ๐‘ฃ ๐ต๐‘ฃ โ‰ฅ 0 ๐ฟ 2 = ๐‘ฃ โˆ’๐ต๐‘ฃ โ‰ฅ 0 W e have โˆ— = ๐ต ๐‘ˆ ๐‘ค ๐‘ค โ‰ฅ 0 ๐ฟ 1 โˆ— = โˆ’๐ต ๐‘ˆ ๐‘ค ๐‘ค โ‰ฅ 0 = ๐ต ๐‘ˆ ๐‘ค ๐‘ค โ‰ค 0 ๐ฟ 2 โˆ— โˆช ๐ฟ 2 โˆ— = {๐ต ๐‘ˆ ๐‘ค|๐‘ค โˆˆ ๐‘† ๐‘ž } (๐ฟ 1 โˆฉ ๐ฟ 2 ) โˆ— = ๐ฟ 1 12

  13. 2.2.3 Opt. with Equality Constraints: Example 2 + ๐‘ฆ 2 2 min ๐‘ฆ ๐‘” ๐‘ฆ = ๐‘ฆ 1 ๐‘ฆ 1 ๐‘ก. ๐‘ข. 2 1 ๐‘ฆ 2 = 3 โˆ— = ( We can derive ๐‘ฆ โˆ— = ๐‘ฆ 1 6 3 โˆ— , ๐‘ฆ 2 5 , 5 ) 12 12 โˆ— ๐›ผ๐‘” ๐‘ฆ โˆ— = 2๐‘ฆ 1 + 2 , ๐›ผ๐‘” ๐‘ฆ โˆ— + ๐ต ๐‘ˆ ๐‘ค = 6 5 5 โˆ— = 1 ร— โˆ’ 5 = 0 6 6 2๐‘ฆ 2 5 5 New Problem: 2๐‘ฆ 1 2๐‘ฆ 2 + 2 1 ๐‘ค = 0 ๐›ผ๐‘” ๐‘ฆ + ๐ต ๐‘ˆ ๐‘ค = 0 โ‡’ ๐‘ฆ 1 ๐ต๐‘ฆ = ๐‘ 2 1 ๐‘ฆ 2 = 3 13

  14. 2.3 Quasiconvex Functions ๐‘”: ๐‘† ๐‘œ โ†’ ๐‘† is called quasiconvex (unimodal) sublevel set ๐‘‡ ๐‘ข = ๐‘ฆ ๐‘ฆ โˆˆ ๐‘’๐‘๐‘› ๐‘”, ๐‘” ๐‘ฆ โ‰ค ๐‘ข} if its domain and all sublevel sets ๐‘‡ ๐‘ข , โˆ€๐‘ข โˆˆ ๐‘† are convex, ๐‘”: ๐‘† ๐‘œ โ†’ ๐‘† is called quasiconcave if โˆ’๐‘” is quasiconvex. quasiconvex and quasiconcave โ†’ quasilinear ๐‘”(๐‘ฆ) Ex: log ๐‘ฆ, ๐‘ฆ โˆˆ ๐‘† ++ 14

  15. 2.3 Quasiconvex Functions Ex: Ceiling function ๐ท๐‘“๐‘—๐‘š ๐‘ฆ = inf ๐‘จ โˆˆ ๐‘Ž ๐‘จ > ๐‘ฆ : quasilinear ๐‘ฆ 1 0 1 1 2 ๐‘ฆ 1 ๐‘ฆ 2 Ex: ๐‘” ๐‘ฆ 1 , ๐‘ฆ 2 = ๐‘ฆ 1 ๐‘ฆ 2 = ๐‘ฆ 2 1 0 2 ๐‘ฆ 1 ๐‘ฆ 2 โ‰ฅ ๐‘ข} 2 , ๐‘‡ ๐‘ข = ๐‘ฆ โˆˆ ๐‘† + is quasiconcave in ๐‘† + ๐‘ ๐‘ˆ ๐‘ฆ+๐‘ ๐‘‘ ๐‘ˆ ๐‘ฆ+๐‘’ for ๐‘‘ ๐‘ˆ ๐‘ฆ + ๐‘’ > 0 Ex: ๐‘” ๐‘ฆ = ๐‘‡ ๐‘ข = ๐‘ฆ ๐‘‘ ๐‘ˆ ๐‘ฆ + ๐‘’ > 0, ๐‘ ๐‘ˆ + ๐‘ โ‰ค ๐‘ข(๐‘‘ ๐‘ˆ ๐‘ฆ + ๐‘’)} open halfspace closed halfspace โ†’ ๐‘‡ ๐‘ข is convex ( ๐‘ข is given here) quasiconvex โ†’ ๐‘”(๐‘ฆ) is quasiconcave โ†’ quasilinear เต  15

  16. 2.3 Quasiconvex Optimization min ๐‘” ๐‘ (๐‘ฆ) (๐‘” ๐‘ (๐‘ฆ) is quasiconvex, ๐‘” ๐‘— โ€ฒ๐‘ก are convex. ) ๐‘ก. ๐‘ข. ๐‘” ๐‘— ๐‘ฆ โ‰ค 0, ๐‘— = 1, โ€ฆ , ๐‘› ๐ต๐‘ฆ = ๐‘ Remark: A locally opt. solution (๐‘ฆ, ๐‘” 0 ๐‘ฆ ) may not be globally opt. Algorithm: Bisection method for quasiconvex optimization. Given ๐‘š โ‰ค ๐‘ž โˆ— โ‰ค ๐‘ฃ, ๐œ— > 0 Find a Repeat 1. ๐‘ข = (๐‘š + ๐‘ฃ)/2 convex function 2. F ind a feasible solution ๐‘ฆ : ๐‘ก. ๐‘ข. ฮฆ ๐‘ข ๐‘ฆ โ‰ค 0 ๐‘” 0 ๐‘ฆ โ‰ค ๐‘ข โ‡” ฮฆ t ๐‘ฆ โ‰ค 0 ๐‘” ๐‘— ๐‘ฆ โ‰ค 0 ๐ต๐‘ฆ = ๐‘ 3. If solution is feasible, ๐‘ฃ = ๐‘ข, ๐‘“๐‘š๐‘ก๐‘“ ๐‘š = ๐‘ข Until ๐‘ฃ โˆ’ ๐‘š โ‰ค ๐œ— ๐‘ž ๐‘ฆ Ex: ๐‘” ๐‘ฆ = ๐‘Ÿ ๐‘ฆ โ‰ค ๐‘ข โ†’ ๐‘ž ๐‘ฆ โˆ’ ๐‘ข๐‘Ÿ ๐‘ฆ โ‰ค 0 ( p is convex & q is concave) 16

  17. 3. Linear Programming: Format General Form : min ๐‘‘ ๐‘ˆ ๐‘ฆ ๐‘ก. ๐‘ข. ๐ป๐‘ฆ โ‰ค โ„Ž, ๐ป โˆˆ ๐‘† ๐‘›โˆ—๐‘œ , ๐ต โˆˆ ๐‘† ๐‘žโˆ—๐‘œ ๐ต๐‘ฆ = ๐‘ Standard Form : min ๐‘‘ ๐‘ˆ ๐‘ฆ ๐‘ก. ๐‘ข. ๐ต๐‘ฆ = ๐‘ ๐‘ฆ โ‰ฅ 0 Remark: Figure out three possible situations 1. No feasible solutions 2. Unbounded solutions 3. Bounded solutions 17

  18. 3. Linear Programming: Cases min ๐‘‘ ๐‘ˆ ๐‘ฆ ๐‘ก. ๐‘ข. ๐ต๐‘ฆ = ๐‘ (1) No feasible solutions: ๐‘ โˆ‰ ๐‘†(๐ต) ( b is not in the range of A ) 1 1 2 ๐‘ฆ 1 ๐‘ฆ 2 = 1 2 2 e.g. 2 3 3 (2) Unbounded solutions: ๐‘ โˆˆ ๐‘†(๐ต) but ๐‘‘ โˆ‰ ๐‘†(๐ต ๐‘ˆ ) ๐‘ฆ 1 e.g. min 1 1 ๐‘ฆ 2 ๐‘ฆ 1 (The solution โ†’ โˆ’โˆž) ๐‘ฆ 2 = 2 1 2 (3) Bounded solutions: b โˆˆ ๐‘† ๐ต , ๐‘‘ โˆˆ ๐‘† ๐ต ๐‘ˆ ๐‘ฆ 1 e.g. min 1 1 ๐‘ฆ 2 ๐‘ฆ 1 1 1 ๐‘ฆ 2 = 2 1 2 2 Thus ๐‘ฆ โˆ— = 2 2 0 , ๐‘” ๐‘ฆ โˆ— = 1 0 = 2 1 18

Recommend


More recommend