chapter 4 light
play

Chapter 4: Light ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 - PowerPoint PPT Presentation

Chapter 4: Light ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 1 Tacoma Narrows Light is a wave Bridge, 1940 https://www.youtube.com/watch?v=XggxeuFDaDU ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 2 ASTR/PHYS 1060: The


  1. Chapter 4: Light ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 1

  2. Tacoma Narrows Light is a wave Bridge, 1940 https://www.youtube.com/watch?v=XggxeuFDaDU ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 2

  3. ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 3

  4. Light is an “electromagnetic wave” ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 4

  5. ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 5

  6. Speed of Light: can you explain how we can measure it via this method? ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 6

  7. A light-year is a unit of… A) Energy B) Time C) Distance D) Time and Distance ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 7

  8. A light-year is like a parsec, but 3.26 times shorter ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 8

  9. Chapter 4: Light Ch. 5 Reading Quiz due this Thursday If you will miss class, email astr1060absence@gmail.com BEFORE the start of that class Midterm 1 Exam on Sept. 19th (1 week from Thursday) ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 9

  10. Light is “quantized” Its energy is proportional to frequency ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 10

  11. Electromagnetic Spectrum ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 11

  12. What type of emission do we see only from the most energetic events? A) Visible Light B) Radio Waves C) Ultraviolet Light D) Gamma Rays ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 12

  13. What is a spectrum? Intensity/Brightness Wavelength [nm] ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 13

  14. Which object would look bluer? Which object would look brighter? Intensity/Brightness A B Wavelength [nm] ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 14

  15. Emission and Absorption Lines Emission sticks up Absorption sticks down ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 15

  16. ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 16

  17. ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 17

  18. Our eyes are telescopes! Works like a refractor amount of refraction depends on the wavelength of light — cannot focus red and blue light at the same time! ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 18

  19. Astronomical Sources are “infinitely” far away ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 19

  20. Use reflecting telescopes due to less chromatic aberration and easier to build large ones ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 20

  21. xkcd.com ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 21

  22. Why do astronomers keep making telescopes bigger? A) Increase the field of view of a single observation B) Resolve finer details (better image resolution) C) Collect more light D) Astronomers need to compensate for something ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 22

  23. Telescope Resolution ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 23

  24. What is “angular resolution”? A) The angular size of a pixel of a CCD or any detector B) The smallest resolving power of a telescope’s mirrors C) The angles light must be bent by mirrors D) A solution to a tricky problem in optical design ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 24

  25. Making Images Charged Coupled Devices (CCDs) ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 25

  26. Filters ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 26

  27. “True” Color “False” Color ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 27

  28. False color images can be made using light at any wavelength, from radio to gamma ray “True” Color ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 28

  29. If you were designing a telescope to survey the entire sky to study the brightest stars in several colors over the course of a year, what features would you want it to have? large/small FOV? large/small mirrors (collecting area)? 1 big telescope vs. several smaller telescopes? a refracting or reflecting design? Discuss in small groups! ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 29

  30. Brief Tour of the Universe at Different Wavelengths high energy low energy ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 30

  31. Radio (broad band) Jupiter Centaurus A Galaxy Captured charged particles from the Sun Jets accelerated by a supermassive black hole ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 31

  32. Radio (narrow band) Spiral Galaxy Hydrogen gas through emission line at 21 cm Visible light (stars - images at the same scale) ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 32

  33. Infrared - Dust Clouds Visible Light Infrared Light (1-2 μ m) ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 33

  34. Ultraviolet - Massive Stars M81 ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 34

  35. X-ray - Dead Stars X-ray Infrared (Chandra) (Hubble) ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 35

  36. The Crab Nebula Crab Nebula (Remains of a supernova, supernova explosion left a pulsar at the with a pulsar at the center that energizes surrounding gas middle) ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 36

  37. Radio/X-ray - Million Degree Gas in Galaxy Clusters Red = Radio Yellow = Visible Blue = X-ray ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 37

  38. Andromeda Galaxy - Our Nearest Neighbor ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 38

  39. ASTR/PHYS 1060: The Universe Fall 2019: Chapter 4 � 39

Recommend


More recommend