cft lft mot
play

CFT, LFT, MOT It is all about d orbitals 3 d 2 2 x y 3 / 2 - PowerPoint PPT Presentation

CFT, LFT, MOT It is all about d orbitals 3 d 2 2 x y 3 / 2 2 1 Z Z 2 2 = r exp( Zr / 3 a ) sin cos 2 3 d a a 2 2 81 2 x y


  1. CFT, LFT, MOT It is all about d orbitals

  2. 3 d 2 2 − x y 3 / 2 2     1 Z Z 2 2 Ψ = − θ φ     r exp( Zr / 3 a ) sin cos 2 3 d π  a   a  2 2 81 2 − x y 4 1 × = − R d a 3 / 2 Z 7 / 2 r 2 exp( Zr / 3 a ) 3 a 2 81 30 Y. U. Sasidhar r/a

  3. 3 d 2 2 − x y 3 / 2 2     1 Z Z 2 2 Ψ = − θ φ     r exp( Zr / 3 a ) sin cos 2 3 d π  a   a  2 2 81 2 − x y x − ( 2 y 2 ) / r 2 Angular nodes: x = ± y - + + y/a - x/a

  4. 3 d xy 3 / 2 2     1 Z Z Ψ = − θ φ     r 2 exp( Zr / 3 a ) sin 2 sin 2 3 d π  a   a  81 2 xy xy / r 2 angular nodes: x=0, y=0 - + y/a + - x/a

  5. 3 d 2 z 1 1 ( ) Ψ = − θ − 3 / 2 7 / 2 2 2 a Z r exp( Zr / 3 a ) ( 3 cos 1 ) 2 2 3 dz π a 81 6 2 z − ( 3 1 ) 2 r 2 angular nodes - + + x/a - z/a

  6. 1 1 ( ) 3 d Ψ = − θ − 3 / 2 7 / 2 2 2 a Z r exp( Zr / 3 a ) ( 3 cos 1 ) 2 z 2 2 3 dz π a 81 6

  7. 1 1 ( ) 3 d Ψ = − θ − 3 / 2 7 / 2 2 2 a Z r exp( Zr / 3 a ) ( 3 cos 1 ) 2 z 2 2 3 dz π a 81 6

  8. 3 z d is only a nickname 2 1 1 ( ) Ψ = − θ − 3 / 2 7 / 2 2 2 a Z r exp( Zr / 3 a ) ( 3 cos 1 ) 2 2 3 dz π a 81 6 2 z − ( 3 1 ) 2 r 2 2 2 + + ( x y z ) 3 d Full label: 2 2 2 − − 2 z x y

  9. The eg and t2g groups

  10. The eg and t2g groups Which group is destabilized to a greater extent in an octahedral field? What are high spin and low spin complexes? Which configurations yield HS complexes? Which yield LS complexes?

  11. Jahn Teller theorem For any nonlinear molecular system in a degenerate electronic state, a distortion will occur so as to lower the symmetry and remove the degeneracy Nondegenerate systems: d3 , d5 high spin, d6 low spin, d8 , d10 Doubly degenerate: more pronounced Jahn-Teller distortions Triply degenerate: less pronounced Jahn-Teller distortions

  12. Tetragonal distortion (axial ligands moving out) Oh to D4h b1g (dx2-y2) a1g ( dz2 ) b2g ( dxy ) eg ( dxz , dyz ) What happens for a compression along z- axis? What happens in a square planar complex?

  13. Molecular Orbital Theory • Ligand SALCs for an octahedral complex • Metal AOs with matching symmetry

  14. Molecular Orbital Theory: ML6, σ -bond only t1u* a1g* 4 p orbitals: t1u eg* 4 s orbital: a1g 3 d orbitals: t2g eg + t2g σ -SALCs: a1g + eg + t1u eg t1u a1g

  15. Molecular Orbital Theory: ML6, σ -bonds only t1u* a1g* 4 p orbitals: t1u eg* 4 s orbital: Electrons from Metal ion a1g 10 Dq 3 d orbitals: t2g eg + t2g σ -SALCs: a1g + eg + t1u eg t1u Electrons from ligand a1g

  16. Molecular Orbital Theory: ML6, σ -and π - bonds t1u* a1g* 4 p orbitals: t1u eg* 4 s orbital: 10 Dq a1g π∗ ( t2g ) π -SALCs: t1g + t2g + t1u + t2u t1g + t2u 3 d orbitals: t2g eg + t2g t1u π ( t2g ) σ -SALCs: a1g + eg + t1u eg t1u a1g

  17. Revision and Home Work • Tetrahedral ML4 complexes

Recommend


More recommend