cardiac contractility i cardiomyocyte contractility ca 2
play

Cardiac contractility I. Cardiomyocyte contractility, Ca 2+ - PowerPoint PPT Presentation

Cardiac contractility I. Cardiomyocyte contractility, Ca 2+ availability vs. Ca 2+ sensitivity ZOLTN PAPP Muscle Biophysics PhD Summer School Thursday, 30 August, 2018, Budapest 8:30 9:30 Division of Clinical Physiology, Department of


  1. Cardiac contractility I. Cardiomyocyte contractility, Ca 2+ availability vs. Ca 2+ sensitivity ZOLTÁN PAPP Muscle Biophysics PhD Summer School Thursday, 30 August, 2018, Budapest 8:30 – 9:30 Division of Clinical Physiology, Department of Cardiology University of Debrecen Hungary

  2. Cardiac contractility I. Cardiomyocyte contractility, Ca 2+ availability vs. Ca 2+ sensitivity ZOLTÁN PAPP Muscle Biophysics PhD Summer School Thursday, 30 August, 2018, Budapest 8:30 – 9:30 Division of Clinical Physiology, Department of Cardiology University of Debrecen Hungary

  3. Cardiac contractions and relaxations form the basis of cardiac function

  4. Cardiac contractility depends on cardiomyocytes

  5. What makes a cardiomyocyte work? cardiomyocyte

  6. Sarcomeric structure in the heart is similar to that of skeletal myofibres sarcomere

  7. Force generation depends on actin and myosin Fatty acids Fatty acids Glucose Glucose FA-CoA FA-CoA Pyruvate Pyruvate CPT1/2 CPT1/2 PDH PDH Acetyl-CoA Acetyl-CoA Krebs Krebs Ca 2+ Ca 2+  -Oxi-  -Oxi- + + Cycle Cycle dation dation NADH NADH + + ETC ETC Fe 3+ Fe 3+ + + ROS ROS ATP ATP Ca 2+ Ca 2+ Contraction/ Contraction/ Relaxation Relaxation

  8. The actin and myosin cross-bridge cycle deGoma et al., J Am Coll Cardiol 2006;48:2397 – 409

  9. Frank-Starling mechanism: ventricular end-diastolic volume regulates force of contraction Ernest Henry Starling 1866-1927

  10. The Frank-Starling-mechanism and the length-tension relationship

  11. The Frank-Starling-mechanism and the length-tension relationship 100 Force (%) Cardiac muscle 3,0 Sarcomere- 1 1,4 1,8 2,2 2,6 length (  m)

  12. The Frank-Starling-mechanism and the length-tension relationship 100 Skeletal muscle Force (%) Cardiac muscle 3,0 Sarcomere- 1 1,4 1,8 2,2 2,6 length (  m)

  13. What makes a cardiomyocyte work? Answer 1: myofilaments Cardiomyocyte

  14. Excitation-contraction coupling and Ca 2+ transport Sarcolemma Ca 2+ ATPase NCX [Ca 2+ ] i AP T-tubule Contraction SR 200 ms Ca 2+ Channel RyR PLB SERCA NCX Myofilaments Adapted from Sjaastad et al., 2003

  15. Ca 2+ transients regulate cardiac contractile force K + Na + Na + Ca 2+ [Ca 2+ ] i  I Ca-L Cardiomyocyte

  16. Positive staircase

  17. Positive staircase in human heart Tension Ca 2+

  18. Ca 2+ movements are frequency dependent

  19. What makes a cardiomyocyte work? Answer 2: Ca 2+ K + Na + Na + Ca 2+ [Ca 2+ ] i  I Ca-L cardiomyocyte

  20.  - adrenergic regulation of contractility

  21.  - adrenergic regulation of contractility out  -AR in PKA G s ATP AC cAMP RyR2 Sarcoplasmic Reticulum Ca 2+ Ca 2+ LTCC Serca2 PLB PKA PKA Ca 2+ T-tubule PKA myofilaments CREB nucleus Cardiac  contractility Fischmeister et al.,

  22. Cyclic nucleotide mycrodomains in cardiomyocytes out  1 -AR in G s AC cAMP RyR2 Sarcoplasmic PDE4B Reticulum Ca 2+ PDE3 Ca 2+ LTCC Serca2 PDE2 PLB  2 -AR AKAP18 δ G s Ca 2+ G i T-tubule myofilaments nucleus Fischmeister et al.,

  23. Cycic nucleotide mycrodomains in cardiomyocytes out  1 -AR pGC PI3K γ in PDE3B cGMP AKAP79 PDE5 G s PDE2 cGMP PDE8 AC cAMP AKAP15 sGC RyR2 Sarcoplasmic PDE4B Reticulum Ca 2+ PDE3 Ca 2+ LTCC Serca2 CST2 PP2A PP1 PDE2 mAKAP PLB  2 -AR AKAP18 δ G s PDE4D3 arrestin Ca 2+ AKAP79 PDE4D5 G i myomegalin PDE4D3 T-tubule cAMP PDE3A PKA myofilaments PDE3A CREB ICER PDE3A PDE1 AKAP-lbc mAKAP PKC nucleus Epac1 PKD ERK5 PDE4D3 Fischmeister et al.,

  24. What makes a cardiomyocyte work? Answer 3: signaling mechanisms K + Na + Na + Ca 2+ [Ca 2+ ] i  I Ca-L PDE PKA 5’ -AMP cAMP  ATP cardiomyocyte β 1 R G s AC

  25. Myocardial contractility = Ca 2+ -availibility + Ca 2+ -sensitivity K + Na + Na + Ca 2+ [Ca 2+ ] i  I Ca-L ATP + preignition cardiomyocyte - preignition

  26. Ca 2+ -sensitivity and contractile force under steady-state conditions contraction Ca 2+ -sensitivity Force Force systole diastole [Ca 2+ ] time

  27. Ca 2+ -sensitivity and contractile force under steady-state conditions contraction Ca 2+ -sensitivity Force Force systole diastole [Ca 2+ ] time

  28. Ca 2+ -sensitivity is increased in chronic heart failure 1.0 0.8 Relative force 0.6 Donor pCa 50 Heart = 0.26 0.4 failure 0.2 0.0 6.0 5.5 5.0 4.5 pCa van der Velden J, et al. Cardiovasc Res 57,37-47, 2003

  29. Phosphorylation deficit in chronic heart failure 1. 1.0 protein P 0.8 0.8 proteinkinase A Relative force 0.6 0.6 Donor pCa 50 Heart = 0,26 0.4 0.4 failure Donor PKA pCa 50 0.2 0.2 Heart = 0,01 faiure PKA 0.0 0.0 6.0 5.5 5.0 4.5 6.0 5.5 5.0 4.5 pCa van der Velden J, et al. Cardiovasc Res 57,37-47, 2003

  30. The  - adrenergic system during chronic heart failure

  31. Metabolic changes impair contractile performance during acute heart failure (e.g. ischaemia)

  32. Intracellular acidosis decreases Ca 2+ -sensitivity of force production pH: 7.0 cTnC cTnI pH: 6.2 Robertson…Sykes, Arch Biochem Biophys. 2013 Dec 12. doi: 10.1016/j.abb.2013.12.003. Metzger et al., Journal of Physiology (1996), 492.1, pp. 163-172

  33. Inorganic phosphate (P i ) decreases contractile force in permeabilized cardiac trabeculae of the rat P i Kentish J. J Physiol.1986;370,585-604.

  34. Force measurements in isolated cardiomyocytes width Force transducer Motor 70 µm height Measured parameters: Force (F) turnover rate of the actin-myosin cycle (k tr ) 70 µm

  35. Ca 2+ - contracture in a single cardiomyocyte Length Force 2 25 kN/m active force passive force 4,82 pCa 9 20 sec

  36. Determination of the Ca 2+ -sensitivity of force production Maximal Ca 2+ -activated force (F o ) Force (rel.) n Hill Ca 2+ -sensitivity (pCa 50 )

  37. Measuring the turnover rate of actin-myosin cycle in cardiomyocytes Length P 2 25 kN/m Force 4.75 passive pCa 10 20 sec

  38. Measuring the turnover rate of actin-myosin cycle in cardiomyocytes Length P 2 25 kN/m Force 4.75 passive pCa 10 20 sec Length Hossz k tr 25 kN/m 2 Force Erő 1 sec

  39. Isometric force and k tr are both Ca 2+ -dependent A A B pCa: 1 4.82 Force (relative) 0.5 P 0 (relative unit) 5.4 0 6 5 pCa C 5.6 1 5.8 k tr (1/sec) 6.0 6.2 0 6.5 10 6 5 pCa 1 sec

  40. Frank-Starling mechanism and Ca 2+ -sensitivity of force production ventricular volume contractile force time time

  41. Frank-Starling mechanism and Ca 2+ -sensitivity of force production ventricular volume contractile force sarcomere length 1,9 µm time 2,3 µm time

  42. Frank-Starling mechanism and Ca 2+ -sensitivity of force production Ca 2+ -sensitivity ventricular volume contractile force sarcomere length 1,9 µm [Ca 2+ ] time 2,3 µm [Ca 2+ ] time

  43. Ca 2+ -sensitivity and sarcomere length Ca 2+ -sensitivity sarcomere length (SL) (pCa 50 ) ? ? crossbridge kinetics (k tr ) myosin heavy chain

  44. Length dependent Ca 2+ -sensitisation is conservative in mammalians  pCa 50 : ~0,1 Sertés Human Humán Mouse Pig Egér 1 1 1 Normalized force Normalizált erő SL: 2.3  m SL: 1.9  m 0 0 0 7 6 5 7 6 5 7 6 5 pCa pCa pCa Édes IF.,…Papp Z. Am. J. Physiol. 293: R20-R29, 2007

  45. k tr is species dependent, but does not depend on sarcomere length 9 9 9 Egér Sertés Humán Human Mouse Pig 6 6 6 k tr (s -1 )  m S L : 2 .3 3 3 3  m S L : 1 .9 0 0 0 7 6 5 7 6 5 7 6 5 pCa pCa pCa Édes IF.,…Papp Z. Am. J. Physiol. 293: R20-R29, 2007

  46. Length dependent Ca 2+ -sensitisation does not depend on k tr

  47. Length dependent Ca 2+ -sensitisation does not depend on k tr k tr = f app + g app

  48. Length dependent Ca 2+ -sensitisation is compatible with SL dependent cross-bridge recruitment Myosin head Tropomyosin Actin Blocked state Closed state Open state

  49. Summary 1. Cardiomyocyte contractions and relaxations are controlled by interactions between myoplasmic Ca 2+ and myofilament proteins. 2. The Frank-Starling mechanism is the function of sarcomere length. The force-frequency relationship is governed by cardiomyocyte Ca 2+ 3. homeostasis. Cardiomyocyte signaling mechanisms affect Ca 2+ -availability and Ca 2+ - 4. sensitivity of force production. The Frank-Starling mechanism involves changes in Ca 2+ -sensitivity of force 5. production.

  50. THANK YOU FOR YOUR ATTENTION!

Recommend


More recommend