capacity bounds for diamond networks
play

Capacity Bounds for Diamond Networks Gerhard Kramer (TUM) joint - PowerPoint PPT Presentation

Technische Universitt Mnchen Capacity Bounds for Diamond Networks Gerhard Kramer (TUM) joint work with Shirin Saeedi Bidokhti (TUM & Stanford) DIMACS Workshop on Network Coding Rutgers University, NJ December 15, 2015 Institute for


  1. Technische Universität München Capacity Bounds for Diamond Networks Gerhard Kramer (TUM) joint work with Shirin Saeedi Bidokhti (TUM & Stanford) DIMACS Workshop on Network Coding Rutgers University, NJ December 15, 2015 Institute for Communications Engineering

  2. Technische Universität München What is a “Diamond Network” ? • Cascade of a 2-receiver broadcast channel (BC) and a 2-transmitter multi- access channel (MAC) • Simplifications: (1) MAC is two bit-pipes; (2) BC is two bit-pipes R1 Y 1 X 1 W X Y Ŵ Src Enc BC MAC Dec Sink Y 2 X 2 R2

  3. Technische Universität München What is a “Diamond Network” ? • Cascade of a 2-receiver broadcast channel (BC) and a 2-transmitter multi- access channel (MAC) • Simplifications: (1) MAC is two bit-pipes; (2) BC is two bit-pipes B bits n symbols R1 Y 1 X 1 W X Y Ŵ Src Enc BC MAC Dec Sink Y 2 X 2 R = B/n R2

  4. Technische Universität München Background General Problem • B. E. Schein, Distributed coordination in network information theory. PhD Dissertation, MIT, 2001 MAC is 2 Bit Pipes • A. Sanderovich, S. Shamai, Y. Steinberg, G. Kramer, “Communication via decentralized processing,” IEEE Trans. IT, 2008 BC is 2 Bit Pipes • D. Traskov, G. Kramer, “Reliable communication in networks with multi- access interference,” ITW 2007 • W. Kang, N. Liu, and W. Chong, “The Gaussian multiple access diamond channel,” arxiv 2011 (v1) and 2015 (v2)

  5. Technische Universität München Here: BC is two bit pipes • Capacity limitations C 1 and C 2 . Problem seems difficult! • Gaussian MAC partially solved by Kang-Liu (2011) using Ozarow’s trick (1980) • Contribution: new capacity upper bound for discrete MACs • Contribution: solved binary adder MAC capacity by extending Mrs. Gerber’s Lemma R1 X 1 V 1 W Y Ŵ Src Enc MAC Dec Sink V 2 X 2 R2

  6. Outline The Problem Setup A Lower Bound An Upper-Bound Examples The Gaussian MAC The binary adder MAC 3 / 28

  7. The Problem Setup X n 1 Relay 1 MAC Y n ˆ W W Source Encoder Decoder Sink p ( y | x 1 ,x 2 ) X n 2 Relay 2 I W message of rate R 4 / 28

  8. The Problem Setup X n 1 Relay 1 MAC Y n ˆ W W Source Encoder Decoder Sink p ( y | x 1 ,x 2 ) X n 2 Relay 2 I W message of rate R I Bit-pipes of capacities C 1 , C 2 4 / 28

  9. The Problem Setup X n 1 Relay 1 MAC Y n ˆ W W Source Encoder Decoder Sink p ( y | x 1 ,x 2 ) X n 2 Relay 2 I W message of rate R I Bit-pipes of capacities C 1 , C 2 I Goal: What is the highest rate R such that P r( W 6 = ˆ W ) ! 0? 4 / 28

  10. A Lower Bound X n Relay 1 1 MAC Y n ˆ W W Source Encoder Decoder Sink p ( y | x 1 ,x 2 ) X n 2 Relay 2 I Rate splitting: W = ( W 12 , W 1 , W 2 ) I Superposition Coding: W 12 encoded in V n . X n 1 , X n 2 superposed on V n . I Marton’s Coding … a sophisticated superposition … a sophisticated superposition … a sophisticated superposition … a sophisticated superposition 5 / 28

  11. Technische Universität München Rate Bounds • Rate-splitting bounds: • Now apply Fourier-Motzkin elimination

  12. A Lower Bound (Cont.) Theorem (Lower Bound) The rate R is achievable if it satisfies the following condition for some pmf p ( v, x 1 , x 2 , y ) = p ( v, x 1 , x 2 ) p ( y | x 1 , x 2 ) : 8 C 1 + C 2 � I ( X 1 ; X 2 | V ) 9 > > > > C 2 + I ( X 1 ; Y | X 2 V ) > > > > < = R  min C 1 + I ( X 2 ; Y | X 1 V ) 1 2 ( C 1 + C 2 + I ( X 1 X 2 ; Y | V ) � I ( X 1 ; X 2 | V )) > > > > > > > > I ( X 1 X 2 ; Y ) : ; V 2 V , |V|  min { |X 1 | |X 2 | +2 , |Y| +4 } - S. Saeedi Bidokhti, G. Kramer, “Capacity bounds for a class of diamond networks,” ISIT 2014 - S. Saeedi Bidokhti, G. Kramer, “Capacity bounds for a class of diamond networks,” ISIT 2014 - S. Saeedi Bidokhti, G. Kramer, “Capacity bounds for a class of diamond networks,” ISIT 2014 - S. Saeedi Bidokhti, G. Kramer, “Capacity bounds for a class of diamond networks,” ISIT 2014 - W. Kang, N. Liu, W. Chong, “The Gaussian multiple access diamond channel,” arxiv 1104.3300, v2, 2015 - W. Kang, N. Liu, W. Chong, “The Gaussian multiple access diamond channel,” arxiv 1104.3300, v2, 2015 - W. Kang, N. Liu, W. Chong, “The Gaussian multiple access diamond channel,” arxiv 1104.3300, v2, 2015 - W. Kang, N. Liu, W. Chong, “The Gaussian multiple access diamond channel,” arxiv 1104.3300, v2, 2015 6 / 28

  13. The Cut-Set Bound Cut-Set bound: R is achievable only if it satisfies the following bounds for some p ( x 1 , x 2 ): Four Cuts: Four Cuts: Four Cuts: Four Cuts: X 2 R C 1 + C 2  C 2 C 1 + I ( X 2 ; Y | X 1 ) R  source Y sink R C 2 + I ( X 1 ; Y | X 2 )  R  I ( X 1 X 2 ; Y ) . C 1 X 1 7 / 28

  14. Example I: binary adder MAC I X 1 = X 2 = { 0 , 1 } , Y = { 0 , 1 , 2 } I Y = X 1 + X 2 1 . 58 1 . 56 1 . 54 Rate R 1 . 52 1 . 5 1 . 48 Cut-Set bound 1 . 46 Lower bound 0 . 74 0 . 76 0 . 78 0 . 8 0 . 82 0 . 84 0 . 86 Link Capacity C 8 / 28

  15. Example I: binary adder MAC I X 1 = X 2 = { 0 , 1 } , Y = { 0 , 1 , 2 } I Y = X 1 + X 2 1 . 58 1 . 56 1 . 54 Rate R 1 . 52 1 . 5 1 . 48 Cut-Set bound 1 . 46 Lower bound and capacity 0 . 74 0 . 76 0 . 78 0 . 8 0 . 82 0 . 84 0 . 86 Link Capacity C 8 / 28

  16. Example II: Gaussian MAC I Y = X 1 + X 2 + Z , Z ⇠ N (0 , 1) P n P n 1 i =1 E ( X 2 1 i =1 E ( X 2 1 ,i )  P 1 , 2 ,i )  P 2 , P 1 = P 2 = 1 I n n 1 . 2 1 . 15 1 . 1 1 . 05 1 Rate R 0 . 95 0 . 9 0 . 85 0 . 8 0 . 75 Cut-Set bound 0 . 7 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 1 . 3 1 . 4 Link Capacity C 9 / 28

  17. Example II: Gaussian MAC I Y = X 1 + X 2 + Z , Z ⇠ N (0 , 1) P n P n 1 i =1 E ( X 2 1 i =1 E ( X 2 1 ,i )  P 1 , 2 ,i )  P 2 , P 1 = P 2 = 1 I n n 1 . 2 1 . 15 1 . 1 1 . 05 1 Rate R 0 . 95 0 . 9 0 . 85 0 . 8 Cut-Set bound 0 . 75 Lower bound (no superposition coding) 0 . 7 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 1 . 3 1 . 4 Link Capacity C 9 / 28

  18. Example II: Gaussian MAC I Y = X 1 + X 2 + Z , Z ⇠ N (0 , 1) P n P n 1 i =1 E ( X 2 1 i =1 E ( X 2 1 ,i )  P 1 , 2 ,i )  P 2 , P 1 = P 2 = 1 I n n 1 . 2 1 . 15 1 . 1 1 . 05 1 Rate R 0 . 95 0 . 9 0 . 85 0 . 8 Cut-Set bound Lower bound (no superposition coding) 0 . 75 Lower bound (Joint Gaussian dist.) 0 . 7 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 1 . 3 1 . 4 Link Capacity C 9 / 28

  19. Example II: Gaussian MAC I Y = X 1 + X 2 + Z , Z ⇠ N (0 , 1) P n P n 1 i =1 E ( X 2 1 i =1 E ( X 2 1 ,i )  P 1 , 2 ,i )  P 2 , P 1 = P 2 = 1 I n n 1 . 2 1 . 15 1 . 1 1 . 05 1 Rate R 0 . 95 0 . 9 0 . 85 Cut-Set bound 0 . 8 Lower bound (no superposition coding) Lower bound (Joint Gaussian dist.) 0 . 75 Lower bound (Mixture of two Gaussian dist.) 0 . 7 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 1 . 3 1 . 4 Link Capacity C 9 / 28

  20. Example II: Gaussian MAC I Y = X 1 + X 2 + Z , Z ⇠ N (0 , 1) P n P n 1 i =1 E ( X 2 1 i =1 E ( X 2 1 ,i )  P 1 , 2 ,i )  P 2 , P 1 = P 2 = 1 I n n 1 . 2 1 . 15 1 . 1 Lower bound Lower bound is tight is tight � � � � � � � � � � � � � � � � � � ! 1 . 05 1 Rate R 0 . 95 0 . 9 0 . 85 Cut-Set bound 0 . 8 Lower bound (no superposition coding) Lower bound (Joint Gaussian dist.) 0 . 75 Lower bound (Mixture of two Gaussian dist.) 0 . 7 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1 1 . 2 1 . 3 1 . 4 Link Capacity C 9 / 28

  21. Is the Cut-Set Bound Tight? Cut-Set bound: R  C 1 + C 2 X 2 R C 1 + I ( X 2 ; Y | X 1 )  C 2 R  C 2 + I ( X 1 ; Y | X 2 ) source Y sink R I ( X 1 X 2 ; Y ) .  C 1 Maximize over p ( x 1 , x 2 ). X 1 10 / 28

  22. Is the Cut-Set Bound Tight? Cut-Set bound: R  C 1 + C 2 X 2 R C 1 + I ( X 2 ; Y | X 1 )  C 2 R  C 2 + I ( X 1 ; Y | X 2 ) source Y sink R I ( X 1 X 2 ; Y ) .  C 1 Maximize over p ( x 1 , x 2 ). X 1 It turns out that the cut-set bound is not tight. One culprit is the cut ({source}, {R1,R2,sink}) One culprit is the cut ({source}, {R1,R2,sink}) One culprit is the cut ({source}, {R1,R2,sink}) One culprit is the cut ({source}, {R1,R2,sink}) One culprit is the cut ({source}, {R1,R2,sink}) One culprit is the cut ({source}, {R1,R2,sink}) One culprit is the cut ({source}, {R1,R2,sink}) One culprit is the cut ({source}, {R1,R2,sink}) 10 / 28

  23. Refining the Cut-Set Bound (cf. [TraskovKramer’07]) (cf. [TraskovKramer’07]) (cf. [TraskovKramer’07]) (cf. [TraskovKramer’07]) (cf. [TraskovKramer’07]) (cf. [TraskovKramer’07]) (cf. [TraskovKramer’07]) (cf. [TraskovKramer’07]) I Motivated by [Ozarow’80, KangLiu’11] 11 / 28

  24. Refining the Cut-Set Bound I Motivated by [Ozarow’80, KangLiu’11] nR  nC 1 + nC 2 � I ( X n 1 ; X n 2 ) 11 / 28

Recommend


More recommend