by means of characterisation and simulation
play

by means of characterisation and simulation Pietro P. Altermatt - PowerPoint PPT Presentation

Understanding the fill factor by means of characterisation and simulation Pietro P. Altermatt Leinbiz University of Hannover, Germany SPREE Seminar @ UNSW, 19th March 2015 LUH 1 Which parameters influence the fill factor? LUH the lumped


  1. Understanding the fill factor by means of characterisation and simulation Pietro P. Altermatt Leinbiz University of Hannover, Germany SPREE Seminar @ UNSW, 19th March 2015 LUH 1

  2. Which parameters influence the fill factor? LUH

  3. …the lumped series resistance R s LUH

  4. … the V oc n = 1.0 R s = 0 M.A. Green, Solar Cells, 1992, (ISBN 0 85823 580 3), p. 96 M.A. Green, Solar Cells 7, 337 (1982) LUH

  5. … der ideality factor n R s = 0 M.A. Green, Solar Cells, 1992, (ISBN 0 85823 580 3), p. 96 M.A. Green, Solar Cells 7, 337 (1982) LUH

  6. Analytical approximation using V oc , n and R s J sc = 39 mA/cm 2 Detailed overview of analytical equations for FF: E. Sanchez and G.L. Araujo, Solar Cells 20, 1 (1987) LUH

  7. Do we here have a „FF problem “ ? LUH

  8. No LUH

  9. FF in relation to V oc It is advantageous to consider FF in relation to V oc LUH

  10. FF depends on n The idality factor may influence FF as strongly as R s . LUH

  11. Contents (Loss)-analysis Characterization 1 2 using simulations using I-V measurements LUH

  12. Contents Characterization 1 using I-V measurements LUH

  13. Measurement of I-V curves Measurement V mpp Current-density [mA/cm 2 ] J sc -V oc Dark 1-sun 1-sun  1.1-sun  0.9 sun (J sc -V oc ) dark V oc Bias [V] LUH

  14. I-V curves – logarithmic LUH

  15. I-V curves – logarithmic LUH

  16. I-V curves – logarithmic LUH

  17. I-V curves – logarithmic LUH

  18. I-V curves – logarithmic Current-density [mA/cm 2 ] V mpp J sc -V oc 1-sun dark V oc Bias [V] LUH

  19. Extraction of R s Measurement Extraction of R s LUH

  20. R s extraction from I-V curves Current density [mA/cm 2 ] V mpp Series resistance [  cm 2 ] J sc -V oc DLL 1-sun J sc -V oc dark V oc Bias [V] Bias [V] Overview: P.P. Altermatt et al, Prog. PV 4, 399 (1996) LUH

  21. Tripple light-level (TLL) method K. F. Fong, K. R. McIntosh, A. W. Blakers, Prog. PV 21, 490 (2013) LUH

  22. Tripple light-level (TLL) method K. F. Fong, K. R. McIntosh, A. W. Blakers, Prog. PV 21, 490 (2013) LUH

  23. Large J 0 → I -V curve is higher LUH

  24. Large J 0 → I -V curve is higher LUH

  25. R s extraction from I-V curves V mpp Current-density [mA/cm 2 ] Series resistance [  cm 2 ] J sc -V oc DLL 1-sun J sc -V oc dark V oc Bias [V] Bias [V] If possible, use the tripple light-level method to measure R s K. F. Fong, K. R. McIntosh, A. W. Blakers, Prog. PV 21, 490 (2013) LUH

  26. Simulation of the metallised parts Device simulation Circuit simulation Y. Yang et al, Prog. PV 20, 490 (2012) LUH

  27. Simulation of the metallized parts Device simulation Series resistance [  cm 2 ] DLL. Circuit simulation J sc -V oc Internal R s Bias [V] LUH

  28. Parametrization of R s Measurement Extraction Parametrization of R s of R s (V) Proper distinction between R s - and recombination losses If simulation: internal R s LUH

  29. R s (V) as polynome 2nd degree where V 0 is offen  V oc Series resistance [  cm 2 ] DLL. J sc -V oc Internal R s Bias [V] LUH

  30. R s -corrected I-V curves Measurement Extraction Parametrization R s (V)-free of R s of R s (V) I-V curves Proper distinction R s (V) between R s - and polynome recombination losses If simulation: internal R s LUH

  31. R s -corrected I-V curves 2 ] Current density [mA/cm 1 10 Exp R s (V mpp ) 0 10 FF Exp = 78.52 R s (V) FF R s (V) = 83.18 -1 10 0.40 0.45 0.50 0.55 0.60 0.65 External bias [V] LUH

  32. R s -corrected I-V curves show recombination losses 2 ] Current density [mA/cm 1 10 Exp R s (V mpp ) 0 10 FF Exp = 78.52 R s (V) FF R s (V) = 83.18 FF R s (V mpp ) = 83.09 -1 10 0.40 0.45 0.50 0.55 0.60 0.65 External bias [V] LUH

  33. Comparison of pseudo-FF with 1FF FF Exp = 78.52 FF R s (V) = 83.18 FF R s (V mpp ) = 83.09 FF n=1 = 83.28 pFF n = 1.0 is often smaller R s = 0 than 1FF M.A. Green, Solar Cells, 1992, (ISBN 0 85823 580 3), p. 96 M.A. Green, Solar Cells 7, 337 (1982) LUH

  34. Loss analysis Loss analysis Measurement Extraction Parametrization R s (V)-free of R s of R s (V) I-V curves Predictions Proper distinction R s (V) Recombination between R s - and polynome losses recombination losses pFF If simulation: internal R s 1FF LUH

  35. Content (Loss)-Analysis 2 using simulations LUH

  36. Domain & discretization Finger 2D Domain Entire cell LUH

  37. Reproduction of the ideality factor Ultimate test S. Steingrube et al. Energy Procedia 8, 263 (2011) LUH

  38. Which is the most likely current-path? dark V applied forward bias LUH

  39. Exponentially increasing recombination rates LUH 39

  40. Dark I-V curve = recombination rate Number of defects 40 many few 2 ] Stromdichte [mA/cm 30 20 10 0 -100 0 100 200 300 400 500 600 700 Spannung [mV] LUH

  41. Illuminated I-V curve is shifted to 4th quadrant LUH

  42. Think of G – R G LUH

  43. J(V) = G – R(V) J(V) = G – R(V) R(V) G LUH

  44. Losses in the various cell regions R(V) Recombination current [mA/cm 2 ] Total Emitter Base Al-BSF Voltage [V] LUH

  45. Predictions Loss analysis Measurement Extraction Parametrization R s (V)-free of R s of R s (V) I-V curves Predictions LUH

  46. After improvement of the emitter in a PERC cell Standard cell Improved emitter Recombination current [mA/cm 2 ] Total Emitter Base Al-BSF Bias [V] Bias [V] V oc = 614 mV V oc = 633 mV FF = 76.3 FF = 75.4 LUH

  47. Losses in the p-type Cz base LUH

  48. Injection dependent lifetime in the p-type base          ( n n n ) ( p p n )    p 0 1 n 0 1 ( ) n    SRH n p n 0 0    B-dotiertes Cz-Si N dop =5.1x10 15 cm -3 N dop =5.1  10 15 cm -3 n p Lebensdauer  eff  [µs] nach Tempern 10 -4 (200°C 10 min) B-O complex Effective lifetime  p /  n =10 nach Beleuctung (1Sonne 60 Stunden)  10 -5 n 10 12 10 13 10 14 10 15 10 16 10 17 Ladungsträgerkonzentration  n [cm -3 ] Injection density  n [cm -3 ] J. Schmidt, A. Cuevas, J. Appl. Phys. 86 (1999) 3175 S. Rein, S.W. Glunz, Appl. Phys. Lett. 82 (2003) 1054 K. Bothe R. Sinton, J. Schmidt, Prog. PV 13 (2005) 287 LUH

  49. Deactivated B-doped Cz wafers D. Waler et al, Appl. Phys. Lett. 104, 042111 (2014) LUH 49

  50. Improved emitter → smaller FF because of base! Standard cell Improved emitter Recombination current [mA/cm 2 ] Total Emitter Base Al-BSF Bias [V] Bias [V] V oc = 614 mV V oc = 633 mV FF = 76.3 FF = 75.4 LUH

  51. FF, pFF und 1FF Two cells with low FF Mainly due to R s  pFF is close to 1FF 1) Mainly due to n  pFF is far from1FF 2)  Determine FF and pFF, if possible using R s (V), and 1FF LUH

  52. More recent progress of PERC cells (1) Inital Improved emitter 79.69 80.38 LUH 52

  53. More recent progress of PERC cells (2) Improved emitter Improved base and rear 80.80 80.38 LUH 53

  54. More recent progress of PERC cells (3) Improved base and rear Improved base 80.80 81.46 LUH 54

  55. Emitter losses increase… Inital Improved emitter… …base and rear …base LUH 55

  56. …because V mpp increases Inital Improved emitter… …base and rear …base LUH 56

  57. Main points • Extraction of R s (V) from three I-V curves (TLL method) • Clear distinction between R s (V) and recombination losses • R s (V)-corrected I-V curve → pFF < 1FF ? • Further analysis and prediction with simulations FF is not only determined by R s , but also by the ideality factor, i.e.by recombination, especially in good cells (where the base or the rear surface dominates) LUH

  58. Thank you! altermatt@solar.uni-hannover.de LUH

Recommend


More recommend