PROBABILITY DISTRIBUTIONS Business Statistics
CONTENTS Probability distribution functions (discrete) Characteristics of a discrete distribution Today we want to speed up. We will skip some slides or Example: uniform (discrete) distribution postpone a few. Prepare Example: Bernoulli distribution well, we want to start the Example: binomial distribution statistical topics as soon as possible. Probability density functions (continuous) Characteristics of a continuous distribution Example: uniform (continuous) distribution Example: normal (or Gaussian) distribution Example: standard normal distribution Back to the normal distribution Approximations to distributions Old exam question Further study
PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) โช A sample space is called discrete when its elements can be counted โช We will code the elements of a discrete sample space ๐ as 1,2,3, โฆ , ๐ or 0,1,2, โฆ , ๐ โ 1 โช Examples โช die ๐ฆ โ 1,2,3,4,5,6 , so ๐ = 1,2,3,4,5,6 โช coin ๐ฆ โ 0,1 โช number of broken TV sets ๐ฆ โ 0,1,2, โฆ
PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) Distribution function ๐ ๐ฆ = ๐ ๐ = ๐ฆ โช the probability that the (discrete) random variable ๐ assumes the value ๐ฆ โช alternative notation: ๐ ๐ ๐ฆ Note our convention: capital letters ( ๐ ) for random variables lowercase letters ( ๐ฆ ) for values
PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) Example 1 if ๐ฆ = 1 6 1 if ๐ฆ = 2 6 1 if ๐ฆ = 3 6 โช die: ๐ ๐ฆ = 1 if ๐ฆ = 4 6 1 if ๐ฆ = 5 6 1 if ๐ฆ = 6 6 0 otherwise
PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) Example: flipping a coin 3 times โช sample space ๐ = ๐ผ๐ผ๐ผ, ๐ผ๐ผ๐, ๐ผ๐๐ผ, ๐๐ผ๐ผ, โฆ โช define the random variable ๐ = number of heads 1 if ๐ฆ = 0 8 3 if ๐ฆ = 1 8 โช distribution function ๐ ๐ฆ = 3 if ๐ฆ = 2 8 1 if ๐ฆ = 3 8 0 otherwise 1 3 3 1 โช or: ๐ ๐ 0 = 8 , ๐ ๐ 1 = 8 , ๐ ๐ 2 = 8 , ๐ ๐ 3 = 8
PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) โช ๐ ๐ฆ is a (discrete) probability distribution function (pdf or PDF) โช ๐ ๐ฆ = ๐ ๐ = ๐ฆ expresses the probability that ๐ = ๐ฆ โช A random variable ๐ that is distributed with pdf ๐ is written as ๐~๐ โช Some properties of the pdf: โช 0 โค ๐ ๐ฆ โค 1 โช a probability is always between 0 and 1 โช ฯ ๐ฆโ๐ ๐ ๐ฆ = 1 โช the probabilities of all elementary outcomes add up to 1
PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) โช A pdf may have one or more parameters to denote a collection of different but โsimilarโpdfs โช Example: a regular die with ๐ faces 1 ๐ (for ๐ฆ = 1, โฆ , ๐ ) โช ๐ ๐ = ๐ฆ; ๐ = ๐ ๐ ๐ฆ; ๐ = ๐ ๐ฆ; ๐ = โช ๐~๐ ๐ ๐ = 4 ๐ = 6 ๐ = 8 ๐ = 12 ๐ = 20
PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) In addition to the (discrete) probability distribution function (pdf) โช ๐ ๐ = ๐ฆ = ๐ ๐ ๐ฆ = ๐ ๐ฆ we define the (discrete) cumulative distribution function (cdf or CDF) ๐บ ๐ฆ = ๐บ ๐ ๐ฆ = ๐ ๐ โค ๐ฆ and therefore ๐ฆ ๐ฆ ๐บ ๐ฆ = เท ๐ ๐ = ๐ = เท ๐ ๐ Depending on how we ๐=โโ ๐=โโ count, you may also start at ๐ = 0 or ๐ = 1
PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) Example 1 โช die: ๐ ๐ = 2 = 6 , but ๐ ๐ โค 2 = ๐ ๐ = 1 + 1 ๐ ๐ = 2 = 3 โช Some properties of the cdf: โช ๐บ โโ = 0 and ๐บ โ = 1 โช monotonously increasing
PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) โช pdf โช cdf
CHARACTERISTICS OF A DISCRETE DISTRIBUTION Expected value of ๐ ๐ ๐ ๐น ๐ = เท ๐ฆ ๐ ๐ ๐ = ๐ฆ ๐ = เท ๐ฆ ๐ ๐ ๐ฆ ๐ ๐=1 ๐=1 โช Example 1 die with ๐ 1 = ๐ 2 = โฏ = ๐ 6 = โช 6 1 1 1 1 1 1 7 1 โช ๐น ๐ = 1 ร 6 + 2 ร 6 + 3 ร 6 + 4 ร 6 + 5 ร 6 + 6 ร 6 = 2 = 3 2 โช Interpretation: mean (average) โช alternative notation: ๐ or ๐ ๐ so ๐น ๐ = ๐ ๐ โช โช Note difference between ๐ and the sample mean าง ๐ฆ e.g., rolling a specific die ๐ = 100 times may return a mean าง ๐ฆ = 3.72 or โช 3.43 while ๐ = 7/2 , always (property of die, property of โpopulationโ) โช
CHARACTERISTICS OF A DISCRETE DISTRIBUTION Variance ๐ 2 ๐ ๐ฆ ๐ var ๐ = เท ๐ฆ ๐ โ ๐น ๐ ๐=1 โช Interpretation: dispersion alternative notation: ๐ 2 or ๐ ๐ 2 or ๐ ๐ โช so var ๐ = ๐ ๐ 2 โช โช Note difference between ๐ 2 and the sample variance ๐ก 2 e.g., rolling a specific die 100 times may return a variance ๐ก 2 = 2.86 or 3.04 โช while ๐ 2 = 35 12 , always (property of die, property of โpopulationโ) โช โช And of course: standard deviation ๐ ๐ = var ๐
CHARACTERISTICS OF A DISCRETE DISTRIBUTION Transformation rules of random variable ๐ and ๐ โช For means: โช ๐น ๐ + ๐ = ๐ + ๐น ๐ โช ๐น ๐๐ = ๐๐น ๐ โช ๐น ๐ + ๐ = ๐น ๐ + ๐น ๐ โช For variances: โช var ๐ + ๐ = var ๐ โช var ๐๐ = ๐ 2 var ๐ โช if ๐ and ๐ independent (so if cov ๐, `๐ ): โช var ๐ + ๐ = var ๐ + var ๐ โช if ๐ and ๐ dependent: โช var ๐ + ๐ = var ๐ + 2cov ๐, ๐ + var ๐
EXAMPLE: UNIFORM DISTRIBUTION โช Generalization of fair die: โช equal probability of integer outcomes from ๐ through ๐ โช conditions: ๐, ๐ โ โค , ๐ < ๐ โช zero probability elsewhere โช uniform discrete distribution 1 ๐ฆ โ โค and ๐ฆ โ ๐, ๐ โช pdf: ๐ ๐ฆ; ๐, ๐ = เต ๐โ๐+1 0 otherwise โช Examples: โช coin: ๐ = 0 , ๐ = 1 โช die: ๐ = 1 , ๐ = 6 โช Random variable: โช ๐~๐ ๐, ๐
EXAMPLE: UNIFORM DISTRIBUTION No need to memorize or even discuss this sheet. Most information is either on the formula sheet or unimportant.
EXAMPLE: UNIFORM DISTRIBUTION โช Example: choose a random number from 1 through 100 with equal probability and denote it by ๐ โช random variable: ๐~๐ 1,100 1 โช pdf: ๐ ๐ฆ = ๐ ๐ = ๐ฆ = 100 ( ๐ฆ โ 1,2, โฆ , 100 ) ๐ฆ โช cdf: ๐บ ๐ฆ = ๐ ๐ โค ๐ฆ = 100 ( ๐ฆ โ 1,2, โฆ , 100 ) 1 โช expected value: ๐น ๐ = 50 2 9999 โช variance: var ๐ = 12 โ 833.25 โช Sample ( ๐ = 1000 ): โช values (e.g.): 45 , 96 , 33 , 7 , 44 , 96 , 20 , โฆ โช mean: าง ๐ฆ = 50.92 (e.g.) 2 = 823.25 (e.g.) โช variance: ๐ก ๐ฆ
EXERCISE 1 Given are two dice, with outcomes ๐ and ๐ . a. Find ๐น ๐ + ๐ b. Find var ๐ + ๐
EXAMPLE: BERNOULLI DISTRIBUTION โช Bernoulli experiment โช random experiment with 2 discrete outcomes (coin type) โช head, true, โsuccessโ, female: ๐ = 1 โช tail, false, โfailโ, male: ๐ = 0 โช Bernoulli distribution โช Examples: โช winning a price in a lottery (buying one ticket) โช your luggage arrives in time at a destination โช Probability of success is parameter ๐ (with 0 โค ๐ โค 1 ) โช ๐ 1 = ๐ ๐ = 1 = ๐ โช ๐ 0 = ๐ ๐ = 0 = 1 โ ๐ โช Random variable โช ๐~๐ถ๐๐ ๐๐๐ฃ๐๐๐ ๐ or ๐~๐๐๐ข ๐
EXAMPLE: BERNOULLI DISTRIBUTION โช Expected value โช ๐น ๐ = ๐ (obviously!) โช Variance โช var ๐ = ๐ 1 โ ๐ โช variance zero when ๐ = 0 or ๐ = 1 (obviously!) 1 โช variance maximal when ๐ = 1 โ ๐ = 2 (obviously!) ๐ if ๐ฆ = 1 โช pdf: ๐ ๐ฆ; ๐ = แ 1 โ ๐ if ๐ฆ = 0 0 otherwise โช cdf: (not so interesting)
EXAMPLE: BINOMIAL DISTRIBUTION โช Repeating a Bernoulli experiment ๐ times โช ๐ is total number of โsuccessesโ โช ๐ ๐ = ๐ฆ is probality of ๐ฆ โsuccessesโ in sample โช ๐ = ๐ 1 + ๐ 2 + โฏ + ๐ ๐ โช where ๐ ๐ is the outcome of Bernoulli experiment number ๐ = 1,2, โฆ , ๐ โช ๐ has a binomial distribution
EXAMPLE: BINOMIAL DISTRIBUTION โช Example โช flip a coin 10 times: ๐ is number of โheads upโ โช roll 100 dice: ๐ is number of โsixesโ โช produce 1000 TV sets: ๐ is number of broken sets โช What is important? โช the number of repitions ( ๐ ) โช the probability of success ( ๐ ) per item โช the constancy of ๐ โช the independence of the โexperimentsโ
EXAMPLE: BINOMIAL DISTRIBUTION โช Expected value โช ๐น ๐ = ๐๐ (obviously!) โช Variance โช var ๐ = ๐๐ 1 โ ๐ โช minimum ( 0 ) when ๐ = 0 or ๐ = 1 (obviously!) 1 โช maximum for given ๐ when ๐ = 1 โ ๐ = 2 (obviously!) โช pdf: ๐ฆ! ๐โ๐ฆ ! ๐ ๐ฆ 1 โ ๐ ๐โ๐ฆ ๐! ( ๐ฆ โ 0,1,2, โฆ , ๐ ) โช ๐ ๐ฆ; ๐, ๐ = โช cdf: Recall the factorial function: ๐ฆ โช ๐บ ๐ฆ; ๐, ๐ = ฯ ๐=0 ๐ ๐ฆ; ๐, ๐ 5! = 5 ร 4 ร 3 ร 2 ร 1 โช Random variable: โช ๐~๐๐๐ ๐, ๐ or ๐~๐๐๐๐๐ ๐, ๐
Recommend
More recommend