business statistics contents
play

Business Statistics CONTENTS Probability distribution functions - PowerPoint PPT Presentation

PROBABILITY DISTRIBUTIONS Business Statistics CONTENTS Probability distribution functions (discrete) Characteristics of a discrete distribution Today we want to speed up. We will skip some slides or Example: uniform (discrete) distribution


  1. PROBABILITY DISTRIBUTIONS Business Statistics

  2. CONTENTS Probability distribution functions (discrete) Characteristics of a discrete distribution Today we want to speed up. We will skip some slides or Example: uniform (discrete) distribution postpone a few. Prepare Example: Bernoulli distribution well, we want to start the Example: binomial distribution statistical topics as soon as possible. Probability density functions (continuous) Characteristics of a continuous distribution Example: uniform (continuous) distribution Example: normal (or Gaussian) distribution Example: standard normal distribution Back to the normal distribution Approximations to distributions Old exam question Further study

  3. PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) โ–ช A sample space is called discrete when its elements can be counted โ–ช We will code the elements of a discrete sample space ๐‘‡ as 1,2,3, โ€ฆ , ๐‘œ or 0,1,2, โ€ฆ , ๐‘œ โˆ’ 1 โ–ช Examples โ–ช die ๐‘ฆ โˆˆ 1,2,3,4,5,6 , so ๐‘‡ = 1,2,3,4,5,6 โ–ช coin ๐‘ฆ โˆˆ 0,1 โ–ช number of broken TV sets ๐‘ฆ โˆˆ 0,1,2, โ€ฆ

  4. PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) Distribution function ๐‘„ ๐‘ฆ = ๐‘„ ๐‘Œ = ๐‘ฆ โ–ช the probability that the (discrete) random variable ๐‘Œ assumes the value ๐‘ฆ โ–ช alternative notation: ๐‘„ ๐‘Œ ๐‘ฆ Note our convention: capital letters ( ๐‘Œ ) for random variables lowercase letters ( ๐‘ฆ ) for values

  5. PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) Example 1 if ๐‘ฆ = 1 6 1 if ๐‘ฆ = 2 6 1 if ๐‘ฆ = 3 6 โ–ช die: ๐‘„ ๐‘ฆ = 1 if ๐‘ฆ = 4 6 1 if ๐‘ฆ = 5 6 1 if ๐‘ฆ = 6 6 0 otherwise

  6. PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) Example: flipping a coin 3 times โ–ช sample space ๐‘‡ = ๐ผ๐ผ๐ผ, ๐ผ๐ผ๐‘ˆ, ๐ผ๐‘ˆ๐ผ, ๐‘ˆ๐ผ๐ผ, โ€ฆ โ–ช define the random variable ๐‘Œ = number of heads 1 if ๐‘ฆ = 0 8 3 if ๐‘ฆ = 1 8 โ–ช distribution function ๐‘„ ๐‘ฆ = 3 if ๐‘ฆ = 2 8 1 if ๐‘ฆ = 3 8 0 otherwise 1 3 3 1 โ–ช or: ๐‘„ ๐‘Œ 0 = 8 , ๐‘„ ๐‘Œ 1 = 8 , ๐‘„ ๐‘Œ 2 = 8 , ๐‘„ ๐‘Œ 3 = 8

  7. PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) โ–ช ๐‘„ ๐‘ฆ is a (discrete) probability distribution function (pdf or PDF) โ–ช ๐‘„ ๐‘ฆ = ๐‘„ ๐‘Œ = ๐‘ฆ expresses the probability that ๐‘Œ = ๐‘ฆ โ–ช A random variable ๐‘Œ that is distributed with pdf ๐‘„ is written as ๐‘Œ~๐‘„ โ–ช Some properties of the pdf: โ–ช 0 โ‰ค ๐‘„ ๐‘ฆ โ‰ค 1 โ–ช a probability is always between 0 and 1 โ–ช ฯƒ ๐‘ฆโˆˆ๐‘‡ ๐‘„ ๐‘ฆ = 1 โ–ช the probabilities of all elementary outcomes add up to 1

  8. PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) โ–ช A pdf may have one or more parameters to denote a collection of different but โ€œsimilarโ€pdfs โ–ช Example: a regular die with ๐‘› faces 1 ๐‘› (for ๐‘ฆ = 1, โ€ฆ , ๐‘› ) โ–ช ๐‘„ ๐‘Œ = ๐‘ฆ; ๐‘› = ๐‘„ ๐‘Œ ๐‘ฆ; ๐‘› = ๐‘„ ๐‘ฆ; ๐‘› = โ–ช ๐‘Œ~๐‘„ ๐‘› ๐‘› = 4 ๐‘› = 6 ๐‘› = 8 ๐‘› = 12 ๐‘› = 20

  9. PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) In addition to the (discrete) probability distribution function (pdf) โ–ช ๐‘„ ๐‘Œ = ๐‘ฆ = ๐‘„ ๐‘Œ ๐‘ฆ = ๐‘„ ๐‘ฆ we define the (discrete) cumulative distribution function (cdf or CDF) ๐บ ๐‘ฆ = ๐บ ๐‘Œ ๐‘ฆ = ๐‘„ ๐‘Œ โ‰ค ๐‘ฆ and therefore ๐‘ฆ ๐‘ฆ ๐บ ๐‘ฆ = เท ๐‘„ ๐‘Œ = ๐‘™ = เท ๐‘„ ๐‘™ Depending on how we ๐‘™=โˆ’โˆž ๐‘™=โˆ’โˆž count, you may also start at ๐‘™ = 0 or ๐‘™ = 1

  10. PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) Example 1 โ–ช die: ๐‘„ ๐‘Œ = 2 = 6 , but ๐‘„ ๐‘Œ โ‰ค 2 = ๐‘„ ๐‘Œ = 1 + 1 ๐‘„ ๐‘Œ = 2 = 3 โ–ช Some properties of the cdf: โ–ช ๐บ โˆ’โˆž = 0 and ๐บ โˆž = 1 โ–ช monotonously increasing

  11. PROBABILITY DISTRIBUTION FUNCTIONS (DISCRETE) โ–ช pdf โ–ช cdf

  12. CHARACTERISTICS OF A DISCRETE DISTRIBUTION Expected value of ๐‘Œ ๐‘‚ ๐‘‚ ๐น ๐‘Œ = เท ๐‘ฆ ๐‘— ๐‘„ ๐‘Œ = ๐‘ฆ ๐‘— = เท ๐‘ฆ ๐‘— ๐‘„ ๐‘ฆ ๐‘— ๐‘—=1 ๐‘—=1 โ–ช Example 1 die with ๐‘„ 1 = ๐‘„ 2 = โ‹ฏ = ๐‘„ 6 = โ–ช 6 1 1 1 1 1 1 7 1 โ–ช ๐น ๐‘Œ = 1 ร— 6 + 2 ร— 6 + 3 ร— 6 + 4 ร— 6 + 5 ร— 6 + 6 ร— 6 = 2 = 3 2 โ–ช Interpretation: mean (average) โ–ช alternative notation: ๐œˆ or ๐œˆ ๐‘Œ so ๐น ๐‘Œ = ๐œˆ ๐‘Œ โ–ช โ–ช Note difference between ๐œˆ and the sample mean าง ๐‘ฆ e.g., rolling a specific die ๐‘œ = 100 times may return a mean าง ๐‘ฆ = 3.72 or โ–ช 3.43 while ๐œˆ = 7/2 , always (property of die, property of โ€œpopulationโ€) โ–ช

  13. CHARACTERISTICS OF A DISCRETE DISTRIBUTION Variance ๐‘‚ 2 ๐‘„ ๐‘ฆ ๐‘— var ๐‘Œ = เท ๐‘ฆ ๐‘— โˆ’ ๐น ๐‘Œ ๐‘—=1 โ–ช Interpretation: dispersion alternative notation: ๐œ 2 or ๐œ ๐‘Œ 2 or ๐‘Š ๐‘Œ โ–ช so var ๐‘Œ = ๐œ ๐‘Œ 2 โ–ช โ–ช Note difference between ๐œ 2 and the sample variance ๐‘ก 2 e.g., rolling a specific die 100 times may return a variance ๐‘ก 2 = 2.86 or 3.04 โ–ช while ๐œ 2 = 35 12 , always (property of die, property of โ€œpopulationโ€) โ–ช โ–ช And of course: standard deviation ๐œ ๐‘Œ = var ๐‘Œ

  14. CHARACTERISTICS OF A DISCRETE DISTRIBUTION Transformation rules of random variable ๐‘Œ and ๐‘ โ–ช For means: โ–ช ๐น ๐‘™ + ๐‘Œ = ๐‘™ + ๐น ๐‘Œ โ–ช ๐น ๐‘๐‘Œ = ๐‘๐น ๐‘Œ โ–ช ๐น ๐‘Œ + ๐‘ = ๐น ๐‘Œ + ๐น ๐‘ โ–ช For variances: โ–ช var ๐‘™ + ๐‘Œ = var ๐‘Œ โ–ช var ๐‘๐‘Œ = ๐‘ 2 var ๐‘Œ โ–ช if ๐‘Œ and ๐‘ independent (so if cov ๐‘Œ, `๐‘ ): โ–ช var ๐‘Œ + ๐‘ = var ๐‘Œ + var ๐‘ โ–ช if ๐‘Œ and ๐‘ dependent: โ–ช var ๐‘Œ + ๐‘ = var ๐‘Œ + 2cov ๐‘Œ, ๐‘ + var ๐‘

  15. EXAMPLE: UNIFORM DISTRIBUTION โ–ช Generalization of fair die: โ–ช equal probability of integer outcomes from ๐‘ through ๐‘ โ–ช conditions: ๐‘, ๐‘ โˆˆ โ„ค , ๐‘ < ๐‘ โ–ช zero probability elsewhere โ–ช uniform discrete distribution 1 ๐‘ฆ โˆˆ โ„ค and ๐‘ฆ โˆˆ ๐‘, ๐‘ โ–ช pdf: ๐‘„ ๐‘ฆ; ๐‘, ๐‘ = เต ๐‘โˆ’๐‘+1 0 otherwise โ–ช Examples: โ–ช coin: ๐‘ = 0 , ๐‘ = 1 โ–ช die: ๐‘ = 1 , ๐‘ = 6 โ–ช Random variable: โ–ช ๐‘Œ~๐‘‰ ๐‘, ๐‘

  16. EXAMPLE: UNIFORM DISTRIBUTION No need to memorize or even discuss this sheet. Most information is either on the formula sheet or unimportant.

  17. EXAMPLE: UNIFORM DISTRIBUTION โ–ช Example: choose a random number from 1 through 100 with equal probability and denote it by ๐‘Œ โ–ช random variable: ๐‘Œ~๐‘‰ 1,100 1 โ–ช pdf: ๐‘„ ๐‘ฆ = ๐‘„ ๐‘Œ = ๐‘ฆ = 100 ( ๐‘ฆ โˆˆ 1,2, โ€ฆ , 100 ) ๐‘ฆ โ–ช cdf: ๐บ ๐‘ฆ = ๐‘„ ๐‘Œ โ‰ค ๐‘ฆ = 100 ( ๐‘ฆ โˆˆ 1,2, โ€ฆ , 100 ) 1 โ–ช expected value: ๐น ๐‘Œ = 50 2 9999 โ–ช variance: var ๐‘Œ = 12 โ‰ˆ 833.25 โ–ช Sample ( ๐‘œ = 1000 ): โ–ช values (e.g.): 45 , 96 , 33 , 7 , 44 , 96 , 20 , โ€ฆ โ–ช mean: าง ๐‘ฆ = 50.92 (e.g.) 2 = 823.25 (e.g.) โ–ช variance: ๐‘ก ๐‘ฆ

  18. EXERCISE 1 Given are two dice, with outcomes ๐‘Œ and ๐‘ . a. Find ๐น ๐‘Œ + ๐‘ b. Find var ๐‘Œ + ๐‘

  19. EXAMPLE: BERNOULLI DISTRIBUTION โ–ช Bernoulli experiment โ–ช random experiment with 2 discrete outcomes (coin type) โ–ช head, true, โ€œsuccessโ€, female: ๐‘Œ = 1 โ–ช tail, false, โ€œfailโ€, male: ๐‘Œ = 0 โ–ช Bernoulli distribution โ–ช Examples: โ–ช winning a price in a lottery (buying one ticket) โ–ช your luggage arrives in time at a destination โ–ช Probability of success is parameter ๐œŒ (with 0 โ‰ค ๐œŒ โ‰ค 1 ) โ–ช ๐‘„ 1 = ๐‘„ ๐‘Œ = 1 = ๐œŒ โ–ช ๐‘„ 0 = ๐‘„ ๐‘Œ = 0 = 1 โˆ’ ๐œŒ โ–ช Random variable โ–ช ๐‘Œ~๐ถ๐‘“๐‘ ๐‘œ๐‘๐‘ฃ๐‘š๐‘š๐‘— ๐œŒ or ๐‘Œ~๐‘๐‘š๐‘ข ๐œŒ

  20. EXAMPLE: BERNOULLI DISTRIBUTION โ–ช Expected value โ–ช ๐น ๐‘Œ = ๐œŒ (obviously!) โ–ช Variance โ–ช var ๐‘Œ = ๐œŒ 1 โˆ’ ๐œŒ โ–ช variance zero when ๐œŒ = 0 or ๐œŒ = 1 (obviously!) 1 โ–ช variance maximal when ๐œŒ = 1 โˆ’ ๐œŒ = 2 (obviously!) ๐œŒ if ๐‘ฆ = 1 โ–ช pdf: ๐‘ž ๐‘ฆ; ๐œŒ = แ‰ 1 โˆ’ ๐œŒ if ๐‘ฆ = 0 0 otherwise โ–ช cdf: (not so interesting)

  21. EXAMPLE: BINOMIAL DISTRIBUTION โ–ช Repeating a Bernoulli experiment ๐‘œ times โ–ช ๐‘Œ is total number of โ€œsuccessesโ€ โ–ช ๐‘„ ๐‘Œ = ๐‘ฆ is probality of ๐‘ฆ โ€œsuccessesโ€ in sample โ–ช ๐‘Œ = ๐‘Œ 1 + ๐‘Œ 2 + โ‹ฏ + ๐‘Œ ๐‘œ โ–ช where ๐‘Œ ๐‘— is the outcome of Bernoulli experiment number ๐‘— = 1,2, โ€ฆ , ๐‘œ โ–ช ๐‘Œ has a binomial distribution

  22. EXAMPLE: BINOMIAL DISTRIBUTION โ–ช Example โ–ช flip a coin 10 times: ๐‘Œ is number of โ€œheads upโ€ โ–ช roll 100 dice: ๐‘Œ is number of โ€œsixesโ€ โ–ช produce 1000 TV sets: ๐‘Œ is number of broken sets โ–ช What is important? โ–ช the number of repitions ( ๐‘œ ) โ–ช the probability of success ( ๐œŒ ) per item โ–ช the constancy of ๐œŒ โ–ช the independence of the โ€œexperimentsโ€

  23. EXAMPLE: BINOMIAL DISTRIBUTION โ–ช Expected value โ–ช ๐น ๐‘Œ = ๐‘œ๐œŒ (obviously!) โ–ช Variance โ–ช var ๐‘Œ = ๐‘œ๐œŒ 1 โˆ’ ๐œŒ โ–ช minimum ( 0 ) when ๐œŒ = 0 or ๐œŒ = 1 (obviously!) 1 โ–ช maximum for given ๐‘œ when ๐œŒ = 1 โˆ’ ๐œŒ = 2 (obviously!) โ–ช pdf: ๐‘ฆ! ๐‘œโˆ’๐‘ฆ ! ๐œŒ ๐‘ฆ 1 โˆ’ ๐œŒ ๐‘œโˆ’๐‘ฆ ๐‘œ! ( ๐‘ฆ โˆˆ 0,1,2, โ€ฆ , ๐‘œ ) โ–ช ๐‘ž ๐‘ฆ; ๐‘œ, ๐œŒ = โ–ช cdf: Recall the factorial function: ๐‘ฆ โ–ช ๐บ ๐‘ฆ; ๐‘œ, ๐œŒ = ฯƒ ๐‘™=0 ๐‘ž ๐‘ฆ; ๐‘œ, ๐œŒ 5! = 5 ร— 4 ร— 3 ร— 2 ร— 1 โ–ช Random variable: โ–ช ๐‘Œ~๐‘๐‘—๐‘œ ๐‘œ, ๐œŒ or ๐‘Œ~๐‘๐‘—๐‘œ๐‘๐‘› ๐‘œ, ๐œŒ

Recommend


More recommend