boundary value problems on riemannian and lorentzian
play

Boundary value problems on Riemannian and Lorentzian manifolds - PowerPoint PPT Presentation

Boundary value problems on Riemannian and Lorentzian manifolds Christian Br (joint with W. Ballmann, S. Hannes, A. Strohmaier) Institut fr Mathematik Universitt Potsdam AQFT: Where operator algebra meets microlocal analysis Cortona,


  1. Boundary value problems on Riemannian and Lorentzian manifolds Christian Bär (joint with W. Ballmann, S. Hannes, A. Strohmaier) Institut für Mathematik Universität Potsdam AQFT: Where operator algebra meets microlocal analysis Cortona, June 6, 2018

  2. Outline Riemannian manifolds and elliptic operators 1 The Atiyah-Patodi-Singer index theorem General elliptic boundary conditions Lorentzian manifolds and hyperbolic operators 2 Dirac operator on Lorentzian manifolds Fredholm pairs The Lorentzian index theorem The chiral anomaly More general boundary conditions

  3. 1. Riemannian manifolds and elliptic operators

  4. Setup M Riemannian manifold, compact, with boundary ∂ M spin structure � spinor bundle SM → M n = dim ( M ) even � splitting SM = S R M ⊕ S L M � Dirac operator D : C ∞ ( M , S R M ) → C ∞ ( M , S L M ) Need boundary conditions: Let A 0 be the Dirac operator on ∂ M . P + = χ [ 0 , ∞ ) ( A 0 ) = spectral projector APS-boundary conditions: P + ( f | ∂ M ) = 0

  5. Atiyah-Patodi-Singer index theorem Theorem (M. Atiyah, V. Patodi, I. Singer, 1975) Under APS-boundary conditions D is Fredholm and � � ind ( D APS ) = A ( M ) ∧ ch ( E ) M � A ( M ) ∧ ch ( E )) − h ( A 0 ) + η ( A 0 ) T ( � + 2 ∂ M Here h ( A ) = dim ker ( A ) � sign ( λ ) · | λ | − s η ( A ) = η A ( 0 ) where η A ( s ) = λ ∈ spec ( A ) λ � = 0

  6. Which boundary conditions other than APS will work?

  7. Warning APS-boundary conditions cannot be replaced by anti-Atiyah-Patodi-Singer boundary conditions, P − ( f | ∂ M ) = χ ( −∞ , 0 ) ( A 0 )( f | ∂ M ) = 0 Example M = unit disk ⊂ C ∂ D = ∂ = ∂ z Taylor expansion: u = � ∞ n = 0 α n z n A 0 = i d d θ Fourier expansion: u | ∂ M = � n ∈ Z α n e in θ APS-boundary conditions: α n = 0 for n ≥ 0 ⇒ ker ( D ) = { 0 } aAPS-boundary conditions: α n = 0 for n < 0 ⇒ ker ( D ) = infinite dimensional

  8. Generalize APS conditions Notation For an interval J ⊂ R write � � � � � L 2 u ∈ L 2 ( ∂ M ) J ( ∂ M ) = � u = a λ ϕ λ λ ∈ J ∩ spec ( A 0 ) where A 0 ϕ λ = λϕ λ . Similarly for H s J ( ∂ M ) . APS-boundary conditions 1 f | ∂ M ∈ B = H ( −∞ , 0 ) ( ∂ M ) 2 1. Generalization Replace ( −∞ , 0 ) by ( −∞ , a ] for some a ∈ R : 1 B = H ( −∞ , a ] ( ∂ M ) 2

  9. Generalize APS conditions 2. Generalization Deform 1 B = { v + gv | v ∈ H ( −∞ , a ] ( ∂ M ) } 2 1 1 where g : H ( −∞ , a ] ( ∂ M ) → H 2 ( a , ∞ ) ( ∂ M ) is bounded linear. 2 3. Generalization Finite-dimensional modification 1 B = W + ⊕ { v + gv | v ∈ H ( −∞ , a ] ( ∂ M ) } 2 where W + ⊂ C ∞ ( ∂ M ) is finite-dimensional.

  10. Elliptic boundary conditions Definition 1 2 ( ∂ M ) is said to be an elliptic A linear subspace B ⊂ H boundary condition if there is an L 2 -orthogonal decomposition L 2 ( ∂ M ) = V − ⊕ W − ⊕ V + ⊕ W + such that 1 2 } B = W + ⊕ { v + gv | v ∈ V − ∩ H where 1) W ± ⊂ C ∞ ( ∂ M ) finite-dimensional; 2) V − ⊕ W − ⊂ L 2 ( −∞ , a ] ( ∂ M ) and V + ⊕ W + ⊂ L 2 [ − a , ∞ ) ( ∂ M ) , for some a ∈ R ; 3) g : V − → V + and g ∗ : V + → V − are operators of order 0.

  11. Fredholm property and boundary regularity Theorem (Ballmann-B. 2012) Let B be an elliptic boundary condition. Then D B : { f ∈ H 1 ( M , S R ) | f | ∂ M ∈ B } → L 2 ( M , S L ) is Fredholm. Theorem (Ballmann-B. 2012) Let B be an elliptic boundary condition. Then f ∈ H k + 1 ( M , S R ) ⇐ ⇒ D B f ∈ H k ( M , S L ) , for all f ∈ dom D B and k ≥ 0. In particular, f ∈ dom D B is smooth up to the boundary iff D B f is smooth up to the boundary.

  12. Examples 1) Generalized APS: V − = L 2 ( −∞ , a ) ( A 0 ) , V + = L 2 [ a , ∞ ) ( A 0 ) , W − = W + = { 0 } , g = 0. Then 1 B = H ( −∞ , a ) ( A 0 ) . 2 2) Classical local elliptic boundary conditions in the sense of Lopatinsky-Schapiro.

  13. Examples 3) “Transmission” condition � � 1 1 1 2 ( N 1 , S R ) ⊕ H 2 ( N 2 , S R ) | φ ∈ H 2 ( N , S R ) B = ( φ, φ ) ∈ H Here V + = L 2 ( 0 , ∞ ) ( A 0 ⊕ − A 0 ) = L 2 ( 0 , ∞ ) ( A 0 ) ⊕ L 2 ( −∞ , 0 ) ( A 0 ) V − = L 2 ( −∞ , 0 ) ( A 0 ⊕ − A 0 ) = L 2 ( −∞ , 0 ) ( A 0 ) ⊕ L 2 ( 0 , ∞ ) ( A 0 ) W + = { ( φ, φ ) ∈ ker ( A 0 ) ⊕ ker ( A 0 ) } W − = { ( φ, − φ ) ∈ ker ( A 0 ) ⊕ ker ( A 0 ) } � 0 � id g : V − → V + , g = id 0

  14. A deformation argument Replace B by B s where g is replaced by g s with g s = s · g . Then B 1 = transmission condition and B 0 = APS-condition. Hence ind ( D M ) = ind ( D M ′ transm . ) = ind ( D M ′ APS ) . Holds also if M is complete noncompact and D satisfies a coercivity condition at infinity. Implies relative index theorem by Gromov and Lawson (1983).

  15. 2. Lorentzian manifolds and hyperbolic operators

  16. Globally hyperbolic spacetimes Let M be a globally hyperbolic Lorentzian manifold with boundary ∂ M = Σ 0 ⊔ Σ 1 Σ j compact smooth spacelike Cauchy hypersurfaces

  17. � � The Cauchy problem Well-posedness of Cauchy problem The map D ⊕ res Σ : C ∞ ( M ; S R ) → C ∞ ( M ; S L ) ⊕ C ∞ (Σ; S R ) is an isomorphism of topological vector spaces. Wave propagator U : { v ∈ C ∞ ( M ; S R ) | Dv = 0 } res Σ 0 res Σ 1 ∼ ∼ = = U � C ∞ (Σ 1 , S R ) C ∞ (Σ 0 , S R ) U extends to unitary operator L 2 (Σ 0 ; S R ) → L 2 (Σ 1 ; S R ) .

  18. Fredholm pairs Definition Let H be a Hilbert space and B 0 , B 1 ⊂ H closed linear subspaces. Then ( B 0 , B 1 ) is called a Fredholm pair if B 0 ∩ B 1 is finite dimensional and B 0 + B 1 is closed and has finite codimension. The number ind ( B 0 , B 1 ) = dim ( B 0 ∩ B 1 ) − dim ( H / ( B 0 + B 1 )) is called the index of the pair ( B 0 , B 1 ) . Elementary properties: 1.) ind ( B 0 , B 1 ) = ind ( B 1 , B 0 ) 2.) ind ( B 0 , B 1 ) = − ind ( B ⊥ 0 , B ⊥ 1 ) 3.) Let B 0 ⊂ B ′ 0 with dim ( B ′ 0 / B 0 ) < ∞ . Then ind ( B ′ 0 , B 1 ) = ind ( B 0 , B 1 ) + dim ( B ′ 0 / B 0 ) .

  19. Fredholm pairs and the Dirac operator Let B 0 ⊂ L 2 (Σ 0 , S R ) and B 1 ⊂ L 2 (Σ 1 , S R ) be closed subspaces. Proposition (B.-Hannes 2017) The following are equivalent: (i) The pair ( B 0 , U − 1 B 1 ) is Fredholm of index k ; (ii) The pair ( UB 0 , B 1 ) is Fredholm of index k ; (iii) The restriction D : { f ∈ FE ( M , S R ) | f | Σ i ∈ B i } → L 2 ( M , S L ) is a Fredholm operator of index k .

  20. Trivial example Let dim ( B 0 ) < ∞ and codim ( B 1 ) < ∞ . Then D with these boundary conditions is Fredholm with index dim ( B 0 ) − codim ( B 1 )

  21. The Lorentzian index theorem Theorem (B.-Strohmaier 2015) Under APS-boundary conditions D is Fredholm. The kernel consists of smooth spinor fields and � � � T ( � ind ( D APS ) = A ( M ) ∧ ch ( E ) + A ( M ) ∧ ch ( E )) M ∂ M − h ( A 0 ) + h ( A 1 ) + η ( A 0 ) − η ( A 1 ) 2 ind ( D APS ) = dim ker [ D : C ∞ APS ( M ; S R ) → C ∞ ( M ; S L )] − dim ker [ D : C ∞ aAPS ( M ; S R ) → C ∞ ( M ; S L )] aAPS conditions are as good as APS-boundary conditions.

  22. The chiral anomaly Want to quantize classical Dirac current J ( X ) = � ψ, X · ψ � Fix a Cauchy hypersurface Σ and try ˙ µ ( p ) = ω Σ (¯ J Σ A ( p )( γ µ ) B Ψ A Ψ B ( p )) ˙ Here ω Σ is the vacuum state associated with Σ . Problem: singularities of two-point function. Need regularization procedure. But: relative current does exist J Σ 0 , Σ 1 = J Σ 0 − J Σ 1

  23. Charge creation and index Theorem (B.-Strohmaier 2015) The relative current J Σ 0 , Σ 1 is coclosed and � J Σ 0 , Σ 1 ( ν Σ ) d Σ = ind ( D APS ) . Q R := Σ Hence � A ( M ) ∧ ch ( E ) − h ( A 0 ) − h ( A 1 ) + η ( A 0 ) − η ( A 1 ) � Q R = . 2 M Similarly � A ( M ) ∧ ch ( E ) + h ( A 0 ) − h ( A 1 ) + η ( A 0 ) − η ( A 1 ) � Q L = − . 2 M Total charge Q = Q R + Q L is zero. Chiral charge Q chir = Q R − Q L is not!

  24. Example • Spacetime M = R × S 4 k − 1 with metric − dt 2 + g t where g t are Berger metrics. • Flat connection on trivial bundle E . • Chiral anomaly: � 2 k � Q Σ 0 , Σ 1 = ( − 1 ) k 2 chir k • See Gibbons 1979 for k = 1.

  25. Boundary conditions in graph form A pair ( B 0 , B 1 ) of closed subspaces B i ⊂ L 2 (Σ i , S R ) form elliptic boundary conditions if there are L 2 -orthogonal decompositions L 2 (Σ i , S R ) = S − i ⊕ W − ⊕ V + ⊕ W + i , i = 0 , 1 , i i such that (i) W + i , W − are finite dimensional; i (ii) W − ⊕ V − ⊂ L 2 ( −∞ , a i ] ( ∂ M ) and W + ⊕ V + ⊂ L 2 [ − a i , ∞ ) ( ∂ M ) i i i i for some a i ∈ R ; 0 → V + (iii) There are bounded linear maps g 0 : V − 0 and g 1 : V + 1 → V − 1 such that B 0 = W + 0 ⊕ Γ( g 0 ) , B 1 = W − 1 ⊕ Γ( g 1 ) , where Γ( g 0 / 1 ) = { v + g 0 / 1 v | v ∈ V ∓ 0 / 1 } .

  26. Boundary conditions in graph form Theorem (B.-Hannes 2017) The pair ( B 0 , B 1 ) is Fredholm provided (A) g 0 or g 1 is compact or (B) � g 0 � · � g 1 � is small enough. 1.) Applies if g 0 = 0 or g 1 = 0. 2.) Conditions (A) and (B) cannot both be dropped (counterexamples).

Recommend


More recommend