BNL/PBL SBIR Phase II HTS Program for approaching 40 T Robert Weggel, David Cline, Alper Garren, Jim Kolonko, Ronald Scanlan PBL Ramesh Gupta, Mike Anerella, George Ganetis, Arup Ghosh, Harold Kirk, Robert Palmer, Steve Plate, William Sampson, Yuko Shiroyanagi, Peter Wanderer, Bruce Brandt BNL Seminar In FNAL Tech Division July 22, 2010 • Introduction to YBCO • BNL RIA/FRIB magnet See NFMCC-DOC-553 • Muon Collider Requirements • SBIR Program Design • SBIR Program Progress • Conclusion 1
Introduction to YBCO • Jc’s still very high as B → 40 T • YBCO Much better than BCCO for direction in long solenoid • But we must include the angle effect for finite length coils 2
But • YBCO comes as single super-conducting layer 4-12 mm wide • Currents will not flow uniformly over width • Will have extreme ’magnetization’ • NOT suitable for normal accelerator quality dipoles or quadruples • But suitable for: 1. Iron dominated magnets e.g Quadruples in very high radiation environments 2. Energy storage devices no requirements on field details 3. Final Cooling solenoids for Muon Collider tracks follow field lines wherever they are • Jc depends on angle between cable and field but in a long solenoid the field is in the favorable direction 3
Expression for j vs. B & Angle 1.5 Jaroszynski et al Barzi Relative current density ◦ ◦ ◦ ◦ Normalization 1.0 • + • 10-30 from Jaroszynski + Jaroszynski + • 0-10 from Barzi + 0.5 • Fit to relative current: 0.0 ◦ 0 10 20 30 40 50 Field (T) 4
Fit Angle dependence & normalize Data is Jaroszynski B= 0 Relative current density 1.0 • • • • • • Fit to relative B= 5 • • angle dependences • • • B= 10 • B= 20 • • B= 30 • B= 40 0.1 B= 50 0 25 50 75 Angle from perpendicular (deg) • Absolute normalization from Barzi at 10 T, including insulation Take 77 deg I= 80 A (rec: 80-115), factor for 10 T 4.4 deg =7.8, margin=20% I fac safe 80 7 . 8 0 . 8 (4 . + 0 . 25)(0 . 1 + . 025) = 939 A/mm 2 j (10) = sc ins sc ins • The resulting dependency is not for the material used, or for any single sample and is used only to get an approximation to actual performance 5
BNL work on HTS Quadrupole for RIA/FRIB • Iron pole quadrupole built and tested • Iron is warm • HTS (BCCO) coils at ≈ 70 degrees in cryostats 6
Winding • Stainless steel tape used for ’insulation’ • Because it is radiation hard • But is also strong and a good enough insulator including for quench protection 7
Individual HTS BCCO Coil Performance • Reproducible Performance of many coils 8
Test of YBCO in RIA Coil • YBCO superior to 2223 BCCO • Current densities can be VERY high ( > 1000 A/mm 2 ) • But seemed to be ok will come back to this 9
Muon Collider final cooling requirements Serious Minimal 10 3 Longitudinal Longitudinal Heating Heating Min trans emit (pi mm mrad) • Lower Field Requires Bz= 30 Bz= 40 lower energies Bz= 50 • Lower energies face faster growth of loss 10 2 Min • Faster increase in dp/p Operating • Greater Long emit in- crease 10.0 6 • May not be accepted by Collider Ring 5 Relative ionization loss 4 • 50 T is good 3 • 40 T may be acceptable 2 • 30 T probably not 1 0 5 10.0 100 1000 Kinetic Energy (MeV) 10
Magnet requirements for final cooling Number of magnets ≈ 20 More if field is lower Lengths ≈ 1m at start ≈ 10 cm at end Beam sigmas 4 mm at start 0.7 mm at end Minimum magnet bore 2 cm at start 1 cm at end Field Quality very loose very loose 11
BNL/PBL SBIR Program • First phase 2 SBIR: – Study 6D cooling using 10 T solenoids – Build 10 T Solenoid 10 cm diameter bore – Chose to use YBCO to explore very high current densities → compact • Second phase 2 SBIR: – Study final cooling in 40-50 T solenoids – Build 12 T YBCO Solenoid 2.5 cm diameter bore that fits inside #1 – Test both solenoids in 19 T magnet at NHMFL • Final field calculated → 40 T, but this is R&D. Nothing is guaranteed • The Wilsonian approach: start building • Current status – All YBCO tape finally arrived – 17 of 28 pancakes of first magnet wound – Testing started 12
Some details Length Inside diam Outside diam Stand alone field mm mm mm T NHMFL Resistive 595 233 1010 19 YBCO #1 128 100 165 10 YBCO #2 64 25 95 12 • YBCO width ≈ 4 mm • YBCO Thickness ≈ 100 microns • Length per pancake for #1: ≈ 100 m • Length per pancake for #2: ≈ 50 m • Insulation: 25 micron stainless steel tape • Wound dry with conductor and insulation ’in hand’ • Pancake ’painted’ with epoxy to allow handling Not vacuum impregnated • Splices, as needed, in winding • Splice pancake to pancake at center using 8 mm tape • Voltage taps at center and 4 spaced through coils 13
NHMFL 19 T Resistive magnet • 19.5 cm dia. bore • They have cryostat that we can use • Uses ≈ 20 MW • A superconducting magnet with these parameters commercially available 14
HTS magnets in 19 T Resistive • Nominal Fields: 10 + 12 + 19 = 41 T • But we must calculate using field and angle dependent densities 15
Maximum performance without resistive magnet max j/10 (A/mm 2 ) 40 10.0 Axial Field (T) (cm) (cm) 7.5 12 810 0 8 0 6 6 5 7 5 1 4 8 4 5 4 3 4 2 4 0 3 9 3 9 3 8 3 8 3 7 3 7 3 6 3 6 3 6 3 6 3 6 3 7 3 7 3 8 10 6 6 8 5 3 4 6 4 2 4 0 3 9 3 9 3 8 3 8 3 7 3 7 3 7 3 6 3 6 3 6 3 5 3 5 3 4 3 4 3 4 3 5 3 6 3 6 3 7 422 349 325 303 30 7.5 11 7 7 2 5 5 4 8 4 4 4 2 4 1 4 1 4 0 3 9 3 9 3 8 3 8 3 7 3 6 3 6 3 5 3 5 3 4 3 3 3 3 3 4 3 5 3 6 3 6 11 0 6 7 5 2 4 5 4 2 4 0 3 9 3 9 3 8 3 7 3 7 3 6 3 6 3 6 3 5 3 5 3 4 3 3 3 3 3 2 3 2 3 3 3 4 3 5 3 6 11 0 7 6 5 8 4 8 4 3 4 0 3 9 3 8 3 7 3 6 3 6 3 5 3 5 3 4 3 3 3 3 3 2 3 2 3 1 3 0 3 1 3 2 3 4 3 5 3 6 12 1 9 3 7 4 6 1 5 2 4 7 4 5 4 4 4 2 4 0 3 9 3 8 3 7 3 7 3 6 3 5 3 4 3 3 3 2 3 1 3 1 3 2 3 3 3 5 3 6 radii radii 10 6 8 3 6 7 5 6 4 8 4 4 4 3 4 1 3 9 3 8 3 7 3 6 3 5 3 5 3 4 3 3 3 2 3 2 3 1 3 0 3 0 3 2 3 3 3 5 3 6 5.0 9 4 7 8 6 6 5 6 4 9 4 5 4 3 4 1 3 9 3 7 3 6 3 6 3 5 3 5 3 4 3 3 3 2 3 2 3 1 3 0 3 0 3 2 3 4 3 5 3 6 8 4 7 1 6 1 5 2 4 6 4 2 4 0 3 8 3 6 3 5 3 4 3 4 3 4 3 3 3 3 3 2 3 2 3 1 3 1 3 0 3 1 3 3 3 4 3 6 3 7 20 5.0 8 7 7 5 6 5 5 6 4 9 4 5 4 2 4 0 3 8 3 5 3 4 3 4 3 5 3 5 3 5 3 5 3 4 3 4 3 4 3 3 3 3 3 5 3 6 3 7 3 9 7 9 6 7 5 8 5 0 4 4 4 0 3 8 3 6 3 4 3 1 3 2 3 3 3 4 3 5 3 5 3 5 3 6 3 6 3 5 3 6 3 6 3 7 3 8 3 9 4 0 8 1 7 0 6 1 5 3 4 7 4 2 4 0 3 8 3 5 3 2 3 1 3 3 3 4 3 5 3 6 3 6 3 7 3 7 3 8 3 8 3 9 3 9 4 0 4 2 4 3 438 312 7 7 6 7 5 9 5 1 4 5 4 1 3 9 3 7 3 4 3 2 3 1 3 3 3 4 3 6 3 7 3 8 3 9 3 9 4 0 4 1 4 2 4 2 4 3 4 5 4 6 7 3 6 4 5 7 5 0 4 5 4 1 3 9 3 7 3 4 3 2 3 2 3 4 3 5 3 7 3 8 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 2.5 7 4 6 7 6 0 5 4 4 8 4 4 4 2 4 0 3 7 3 4 3 3 3 5 3 7 3 8 4 0 4 2 4 3 4 5 4 6 4 7 4 9 5 0 5 1 5 2 5 4 10 2.5 7 0 6 4 5 8 5 3 4 8 4 5 4 3 4 1 3 8 3 5 3 5 3 7 3 9 4 1 4 3 4 5 4 7 4 8 5 0 5 1 5 3 5 5 5 6 5 7 5 9 6 6 6 1 5 7 5 2 4 8 4 6 4 4 4 2 4 0 3 7 3 7 4 0 4 2 4 4 4 6 4 8 5 1 5 3 5 5 5 7 5 8 6 0 6 2 6 4 6 5 6 8 6 4 6 0 5 6 5 3 5 0 4 9 4 8 4 6 4 2 4 1 4 4 4 7 4 9 5 1 5 3 5 6 5 8 6 0 6 3 6 5 6 7 6 9 7 1 7 3 6 3 6 0 5 8 5 5 5 3 5 2 5 1 5 0 4 9 4 7 4 8 5 0 5 3 5 5 5 7 6 0 6 2 6 5 6 8 7 0 7 3 7 5 7 7 8 0 8 2 6 4 6 2 6 1 6 0 5 8 5 8 5 7 5 7 5 7 5 6 5 7 5 9 6 1 6 3 6 5 6 8 7 0 7 3 7 6 7 9 8 2 8 5 8 7 9 0 9 3 6 5 6 4 6 4 6 3 6 3 6 4 6 4 6 5 6 5 6 6 6 7 6 9 7 1 7 3 7 5 7 8 8 1 8 4 8 7 9 0 9 4 9 710 010 310 6 0.0 0 0.0 0.000 0.025 0.050 0.075 0.000 0.025 0.050 0.075 length (m) length (m) • Maximum current densities calculated from field and angles • Current densities kept just below these for each of 12 blocks • No margin included graded not graded Central Field T 22.4 18.8 Maximum current density A/mm 2 425 321 Maximum Stress MPa 235 155 16
Recommend
More recommend