black hole partition functions and duality
play

Black Hole Partition Functions and Duality Gabriel Lopes Cardoso - PowerPoint PPT Presentation

Black Hole Partition Functions and Duality Gabriel Lopes Cardoso April 8, 2009 Gabriel Lopes Cardoso (LMU) Black Hole Partition Functions and Duality GGI, April 8, 2009 1 / 14 Summary of Talk The OSV conjecture (2004) states that the


  1. Black Hole Partition Functions and Duality Gabriel Lopes Cardoso April 8, 2009 Gabriel Lopes Cardoso (LMU) Black Hole Partition Functions and Duality GGI, April 8, 2009 1 / 14

  2. Summary of Talk The OSV conjecture (2004) states that the microstates of any N = 2 , D = 4 BPS black hole are captured by the topological string: Z BH = | Z top | 2 (1) However: Duality invariance/covariance not manifest. Black hole degeneracies are sometimes captured by genus 2 Siegel modular forms. Complicated objects, do not lead to (1). Need to change the OSV relation into Z BH ∝ | Z top | 2 to make it compatible with duality invariance. Will encounter non-holomorphic deformation of special geometry. Relation LEEA ↔ topological string amplitudes more subtle than previously envisioned. Gabriel Lopes Cardoso (LMU) Black Hole Partition Functions and Duality GGI, April 8, 2009 2 / 14

  3. OSV Proposal Ooguri + Strominger + Vafa, hep-th/0405146 Let’s consider BPS black holes in four-dimensional N = 2 supergravity theories, dyonic, with electric/magnetic charges ( q , p ) , single-center Define a mixed black hole partition function Z BH in terms of black hole microstate degeneracies d ( p , q ) (a suitable index), � d ( p , q ) e π q φ d φ Z BH ( p , φ ) e − π q φ Z BH ( p , φ ) = d ( p , q ) = � ILPT − → q Here, φ are the electrostatic potentials. OSV proposal: Z BH ≡ e 4 π Im F top , with F top topological free energy. If true, � d φ e π [ 4 Im F top − q φ ] , d ( p , q ) = universal formula in terms of topological string data. Gabriel Lopes Cardoso (LMU) Black Hole Partition Functions and Duality GGI, April 8, 2009 3 / 14

  4. Duality Symmetries Weak topological string coupling g top : ∞ g 2 g − 2 F top ( g top , z A ) = F g ( z A ) � , holomorphic top g = 0 IIA: z A Kähler class moduli of Calabi-Yau threefold. F g ’s enter in the Wilsonian action as follows: metric on Kähler class moduli space is computed from F 0 higher F g ’s ( g ≥ 1) are coupling functions for higher-curvature terms proportional to the square of the Weyl tensor. N = 2 theory may have duality symmetries. Duality invariance requires the F g ’s ( g ≥ 1) to acquire non-holomorphic corrections: needed in the LEEA to make symmetries of the theory manifest; encoded in the holomorphic anomaly equations of the topological string. Gabriel Lopes Cardoso (LMU) Black Hole Partition Functions and Duality GGI, April 8, 2009 4 / 14

  5. This Talk Work at weak topological string coupling g top . Describe a method to include non-holomorphic corrections into the OSV proposal, necessary for duality covariance. Suggests consistent non-holomorphic deformation of special geometry. Departure from topological string. Use saddle-point arguments to infer measure factor in OSV integral. Confront with proposal for microstate degeneracy in a specific N = 2 model, the S-T-U model. A. Sen + C. Vafa, hep-th/9508064 , J. David, arXiv:0711.1971 Agreement! With Justin David, Bernard de Wit and Swapna Mahapatra, arXiv:0810.1233 Bernard de Wit and Swapna Mahapatra, arXiv:0808.2627 Bernard de Wit, Jürg Käppeli and Thomas Mohaupt, hep-th/0601108 . Gabriel Lopes Cardoso (LMU) Black Hole Partition Functions and Duality GGI, April 8, 2009 5 / 14

  6. BPS Black Holes BPS black holes in D = 4 , N = 2: extremal, supported by (VM) complex scalar fields Y I ( I = 0 , . . . , n ), charges ( p I , q I ) . Calabi-Yau compactifications: Wilsonian Lagrangian contains higher-curvature interactions ∝ Weyl 2 → encoded in holomorphic homogeneous function F ( Y , Υ) . Here Υ is the Weyl background. g = 0 ( Y 0 ) 2 − 2 g Υ g F g − F ( Y , Υ) = � ∞ Υ -expansion → topol. string Attractor mechanism: Ferrara, Kallosh, Strominger Y I → Y I Hor ( p , q ) at horizon , Υ → − 64 Attractor equations (in the presence of Weyl 2 ): Y I − ¯ I i p I F I = ∂ F ( Y , Υ) /∂ Y I ¯ Y = , magnetic , F I − ¯ F ¯ i q I F Υ = ∂ F ( Y , Υ) /∂ Υ = , electric , I Y I + ¯ Y ¯ I F I + ¯ F ¯ Electro/magnetostatic potentials: , I Gabriel Lopes Cardoso (LMU) Black Hole Partition Functions and Duality GGI, April 8, 2009 6 / 14

  7. Variational Principle Attractor equations can be obtained from a variational principle, based on a BPS entropy function Σ : Υ) − q I ( Y I + ¯ ¯ I ) + p I ( F I + ¯ Σ( Y , ¯ Y , p , q ) = F ( Y , ¯ Y , Υ , ¯ Y F ¯ I ) , where F is the free energy � ¯ I F I − Y I ¯ � F ( Y , ¯ Y , Υ , ¯ Υ) = − i Y F ¯ − 2 i Υ F Υ − ¯ F ¯ ¯ Υ¯ � � I Υ Stationary points: set Υ = − 64 i ( Y I − ¯ ¯ I − ip I ) δ ( F I + ¯ I − iq I ) δ ( Y I + ¯ ¯ I ) Y F ¯ I ) − i ( F I − ¯ F ¯ Y δ Σ = δ Σ = 0 ← → attractor equations At attractor point, get macroscopic (Wald’s) entropy: π Σ | attractor = S macro ( p , q ) So far, Wilsonian. Gabriel Lopes Cardoso (LMU) Black Hole Partition Functions and Duality GGI, April 8, 2009 7 / 14

  8. Duality Transformations: Entanglement with Υ ! Charges ( p I , q I ) undergo duality transformations. If these constitute symmetries of LEEA, macroscopic entropy is invariant under them. These leave Υ invariant, but act as symplectic Sp ( 2 n + 2 , Z ) transformations on the vector ( Y I , F I ( Y , Υ)) in the attractor equations. Entanglement with the Weyl background! Departure from topological string approach. Precise form of N = 2 LEEA not known − → cannot rely on an action principle to incorporate non-holomorphic corrections needed for duality invariance. Instead, demand: attractor equations retain their form; they follow from a variational principle based on free energy F , I F I − Y I ¯ � ¯ � F ( Y , ¯ Y , Υ , ¯ Υ) = − i Y ¯ F ¯ − 2 i Υ F Υ − ¯ Υ¯ F ¯ � � , I Υ but now based on a general function F ( Y , ¯ Y , Υ , ¯ Υ) , not necessarily holomorphic. Gabriel Lopes Cardoso (LMU) Black Hole Partition Functions and Duality GGI, April 8, 2009 8 / 14

  9. Non-Holomorphic Corrections Variation of F : with the attractor value Υ = − 64 i ( Y I − ¯ ¯ I ) δ ( F I + ¯ I ) δ ( Y I + ¯ ¯ I ) Y F ¯ I ) − i ( F I − ¯ F ¯ Y δ F = � � 2 Υ δ F Υ + Y I δ F I − F I δ Y I � � i + c . c . − Vanishing of second line: at least two solutions, namely F holomorphic, F ( λ Y , λ 2 Υ 2 ) = λ 2 F ( Y , Υ) , usual Wilsonian case F = 2 i Ω , Ω( λ Y , λ ¯ Y , λ 2 Υ , λ 2 ¯ Υ) = λ 2 Ω( Y , ¯ Y , Υ , ¯ Ω real, Υ) Without loss of generality: F = F ( 0 ) ( Y ) + 2 i Ω( Y , ¯ Y , Υ , ¯ Υ) When Ω is harmonic (i.e. Ω = holo + anti-holo), get back usual Wilsonian case. Gabriel Lopes Cardoso (LMU) Black Hole Partition Functions and Duality GGI, April 8, 2009 9 / 14

  10. Consistent Deformation of Special Geometry? Second option seems to be a consistent non-holomorphic deformation of special geometry, e.g.: under symplectic (duality) transformations, ( Y I , F I ) → ( ˜ Y I , ˜ F I ) ; can show that F F I = ∂ ˜ ˜ Y I ; ∂ ˜ ( L , F ) and ( ˜ F ) in same equivalence class; L , ˜ in addition, can show that F Υ − → F Υ , i.e. F Υ transforms as a scalar. It follows that F and Σ are invariant under duality transformations that define a symmetry. Gabriel Lopes Cardoso (LMU) Black Hole Partition Functions and Duality GGI, April 8, 2009 10 / 14

  11. Duality Invariant OSV Integral Consider the following duality invariant integral, expressed in terms of entropy function Σ , with the attractor value Υ = − 64, � � d ( Y I + ¯ ¯ I ) d ( F I + ¯ I ) e π Σ( Y , ¯ Y , p , q ) = Y ) e π Σ( Y , ¯ Y , p , q ) Y F ¯ dY d ¯ Y ∆ − ( Y , ¯ Duality covariance requires measure factor ∆ − = | det F JK − F J ¯ � � �� Im | K Evaluate integral in saddle-point approximation about attractor point: e π Σ | attractor = e S macro ( p , q ) for large charges Duality invariant. Expect saddle-point approximation to hold for dyonic black holes. Suggests to identify the above with d ( p , q ) , as in OSV. Gabriel Lopes Cardoso (LMU) Black Hole Partition Functions and Duality GGI, April 8, 2009 11 / 14

  12. Prediction for Mixed Partition Function On the other hand, when only integrating over Y I − ¯ Y ¯ I in saddle-point Y I = ( φ I + ip I ) / 2, approximation so that get modified OSV-type integral, � ∆ − ( p , φ ) e π [ F E ( p ,φ ) − q I φ I ] , d ( p , q ) = d φ � where Im F ( Y , ¯ Y , Υ , ¯ Υ) − Ω( Y , ¯ Y , Υ , ¯ � � F E = 4 Υ) | Y I =( φ I + ip I ) / 2 , Υ= − 64 Inverting yields prediction for N = 2 mixed black hole partition function, √ √ d ( p , q ) e π q I φ I = ∆ − e 4 π Ω nonholo e π F holo Z BH ( p , φ ) = ∆ − e π F E = � E q Test requires knowledge of microscopic degeneracies. Gabriel Lopes Cardoso (LMU) Black Hole Partition Functions and Duality GGI, April 8, 2009 12 / 14

Recommend


More recommend