biostatistics 615 815 lecture 13
play

Biostatistics 615/815 Lecture 13: . Programming with Matrix Hyun - PowerPoint PPT Presentation

. . . . . . . . Biostatistics 615/815 Lecture 13: . Programming with Matrix Hyun Min Kang February 17th, 2011 Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011 Summary Least square . Introduction . . . . .


  1. . . . . . . . . Biostatistics 615/815 Lecture 13: . Programming with Matrix Hyun Min Kang February 17th, 2011 Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011 Summary Least square . Introduction . . . . . . . . . . . Power Matrix Matrix Computation Linear System 1 / 28 . . . . . . . . . . . . . . . . . . .

  2. . . . . . library, you can ask for another extension . Homework #4 . . . . . . . . Homework 4 is out Floyd-Warshall algorithm Note that some key information was not covered in the class. Fair/biased coint HMM Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011 . . . . . . . . . . . . . . . Introduction Power Matrix Matrix Computation 2 / 28 Linear System Least square . Summary Annoucements . Homework #3 . . . . . . . . . . . . . . . . . . . . • Homework 3 is due today • If you’re using Visual C++ and still have problems in using boost

  3. . . . . . . . library, you can ask for another extension . Homework #4 . . . . . . . . Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011 . . . Matrix Computation . . . . . . . . . . . Introduction Power Homework #3 Matrix 2 / 28 Least square . Annoucements Summary Linear System . . . . . . . . . . . . . . . . . . . . • Homework 3 is due today • If you’re using Visual C++ and still have problems in using boost • Homework 4 is out • Floyd-Warshall algorithm • Note that some key information was not covered in the class. • Fair/biased coint HMM

  4. . Matrix Computation February 17th, 2011 Biostatistics 615/815 - Lecture 13 Hyun Min Kang Last lecture - Conditional independence in graphical models Summary . Least square Linear System . Matrix . . . . . . . . . . . 3 / 28 Power Introduction . . . . . . . . . . . . . . . . . . . '()!+ " !" '()#*!+ " #" '()$*#+ " '()&*#+ " '()%*#+ " $" %" &" • Pr ( A , C , D , E | B ) = Pr ( A | B ) Pr ( C | B ) Pr ( D | B ) Pr ( E | B )

  5. . Matrix Computation February 17th, 2011 Biostatistics 615/815 - Lecture 13 Hyun Min Kang dependency), A is independent of all the other nodes. Markov Blanket Summary . Least square Linear System . 4 / 28 Matrix Power Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • If conditioned on the variables in the gray area (variables with direct • A ⊥ ( U − A − π A ) | π A

  6. . Matrix Computation February 17th, 2011 Biostatistics 615/815 - Lecture 13 Hyun Min Kang . Hidden Markov Models Summary . Least square Linear System 5 / 28 . . Matrix . Power Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . !" ()*# " # $ # % # & # - $"# - %$# !" - &/&0"1# ! "# ! $# ! %# ! &# +,-,*+# 3 !" /' " 1 # 3 !$ /' $ 1 # 3 !% /' % 1 # 3 !& /' & 1 # !" ' "# ' $# ' %# ' &# .-,-# 2 #

  7. . Matrix Computation February 17th, 2011 Biostatistics 615/815 - Lecture 13 Hyun Min Kang . Conditional dependency in forward-backward algorithms Summary . Least square Linear System 6 / 28 Matrix Power Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • Forward : ( q t , o t ) ⊥ o − t | q t − 1 . • Backward : o t +1 ⊥ o + t +1 | q t +1 . !" !" "#$ % " % "&$ % !" !" ! "#$% ! "% ! "&$% !" !" ' "#$% ' "% ' "&$%

  8. . . February 17th, 2011 Biostatistics 615/815 - Lecture 13 Hyun Min Kang Viterbi algorithm - example Summary . Least square Linear System Matrix Computation Matrix Power Introduction . . . . . . . . . . . 7 / 28 . . . . . . . . . . . . . . . . . . . • When observations were (walk, shop, clean) • Similar to Dijkstra’s or Manhattan tourist algorithm

  9. . Matrix Computation February 17th, 2011 Biostatistics 615/815 - Lecture 13 Hyun Min Kang Today’s lecture Summary . Least square Linear System . 8 / 28 . . Power . Introduction . . . . . . . Matrix . . . . . . . . . . . . . . . . . . . . • Calculating Power • Linear algebra 101 • Using Eigen library for linear algebra • Implementing a simple linear regression

  10. . . . . . . . . . . . . . . . . . Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011 . . Problem Matrix Computation . . . . . . . . . . . Introduction . Matrix Power 9 / 28 . Linear System Least square Calculating power Summary . . . . . . . . . . . . . . . . . . . • Computing a n , where a ∈ R and n ∈ N . • How many multiplications would be needed? Function slowPower() double slowPower(double a, int n) { double x = a; for(int i=1; i < n; ++i) { x *= a; } return x; }

  11. . . February 17th, 2011 Biostatistics 615/815 - Lecture 13 Hyun Min Kang . . . . . . . . . More efficient computation of power Summary . Least square Power . . . . . . . . . . . Introduction 10 / 28 Linear System Matrix Matrix Computation . . . . . . . . . . . . . . . . . . . Function fastPower() double fastPower(double a, int n) { if ( n == 1 ) { return a; } else { double x = fastPower(a,n/2); if ( n % 2 == 0 ) { return x * x; } else { return x * x * a; } } }

  12. . . . . . . . . . Running examples . . . . . . . . Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011 . . 11 / 28 . . Matrix Power Introduction . . . . . . . . . . Linear System Least square . Summary Computational time Matrix Computation . . . . . . . . . . . . . . . . . . . main() int main(int argc, char** argv) { double a = 1.0000001; int n = 1000000000; clock_t t1 = clock(); double x = slowPower(a,n); clock_t t2 = clock(); double y = fastPower(a,n); clock_t t3 = clock(); std::cout << "slowPower ans = " << x << ", sec = " << (double)(t2-t1)/CLOCKS_PER_SEC << std::endl; std::cout << "fastPower ans = " << y << ", sec = " << (double)(t3-t2)/CLOCKS_PER_SEC << std::endl; } slowPower ans = 2.6881e+43, sec = 1.88659 fastPower ans = 2.6881e+43, sec = 3e-06

  13. . Matrix Computation February 17th, 2011 Biostatistics 615/815 - Lecture 13 Hyun Min Kang computation could change by clever algorithms Summary . Least square Linear System . 12 / 28 . Power . Introduction . . . . . . . Matrix . . . . . . . . . . . . . . . . . . . . . Summary - fastPower() • Θ( log n ) complexity compared to Θ( n ) complexity of slowPower() • Similar to binary search vs linear search • Good example to illustrate how the efficiency of numerical

  14. . . . Why Matrix matters? . . . . . Summary . . a statistical method the efficiency by orders of magnitude Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011 Programming with Matrix . . Introduction . . . . . . . . . . . Least square 13 / 28 Power Matrix Matrix Computation Linear System . . . . . . . . . . . . . . . . . . . • Many statistical models can be well represented as matrix operations • Linear regression • Logistic regression • Mixed models • Efficient matrix computation can make difference in the practicality of • Understanding C++ implementation of matrix operation can expedite

  15. boost supports C++ interface for BLAS Using a third-party library, Eigen package Using BLAS/LAPACK library Low-level Fortran/C API ATLAS implementation for gcc, MKL library for intel compiler (with multithread support) Used in many statistical packages including R Not user-friendly interface use. . Summary A convenient C++ interface Reasonably fast performance Supports most functions BLAS/LAPACK provides Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011 . Ways to Matrix programmming . Least square . . . . . . . . . . . Introduction Power Matrix Matrix Computation Linear System 14 / 28 . . . . . . . . . . . . . . . . . . . • Implementing Matrix libraries on your own • Implementation can well fit to specific need • Need to pay for implementation overhead • Computational efficiency may not be excellent for large matrices

  16. Using a third-party library, Eigen package . Linear System February 17th, 2011 Biostatistics 615/815 - Lecture 13 Hyun Min Kang Supports most functions BLAS/LAPACK provides Reasonably fast performance A convenient C++ interface multithread support) . Summary . Least square Ways to Matrix programmming 14 / 28 Power Matrix Computation Matrix . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . • Implementing Matrix libraries on your own • Implementation can well fit to specific need • Need to pay for implementation overhead • Computational efficiency may not be excellent for large matrices • Using BLAS/LAPACK library • Low-level Fortran/C API • ATLAS implementation for gcc, MKL library for intel compiler (with • Used in many statistical packages including R • Not user-friendly interface use. • boost supports C++ interface for BLAS

Recommend


More recommend