biogeochmical interactions and feedbacks in the
play

Biogeochmical Interactions and Feedbacks in the Permafrost Regions - PowerPoint PPT Presentation

Biogeochmical Interactions and Feedbacks in the Permafrost Regions Martin H eimann Max-Planck-Institute for Biogeochemistry, J ena, Germany martin.heimann@ bgc-jena.mpg.de 1 Interactions between physical climate system and biology


  1. Biogeochmical Interactions and Feedbacks in the Permafrost Regions Martin H eimann Max-Planck-Institute for Biogeochemistry, J ena, Germany martin.heimann@ bgc-jena.mpg.de 1

  2. Interactions between physical climate system and biology Landvegetation Marine biota Surface color (Albedo) Surface roughness Surface color (Albedo) Biophysical feedbacks Evapotranspiration control Turbidity (Energy absorption) Soil moisture Biogeochemical Emission and absorption of greenhouse gases feedbacks Emission and absorption of aerosols and aerosol precursors 2

  3. The Current Carbon Cycle 3

  4. Recent history of atmospheric CO 2 und O 2 concentration Data: R. Keeling, SIO 4

  5. Temporal Evolution of the Global Carbon Balance Implied Landbiosphere Land Use Uptake Change Flux Inferred N et Landbiosphere Fossil Fuel Emissions Atmosphere (direct observations) O cean (direct observations, modeled) M arland et al. 2005, BP 2006, Hougthon et al., 2006 in prep., Keeling et al., 2005 (updated), Wetzel et al., 2005 5

  6. Δ N atm Q emiss Annual estimates D ecadal average + s.d. 6

  7. Carbon Cycle - Climate System Feedbacks Emissions from CO2 burning of fossil Climate Atmosphere fuels and cement production Changes in landuse and land management Landbiosphere Ocean 7

  8. Coupled Carbon Cycle - Climate Model Simulation Experiments (C 4 MIP) 11 models, SRES-A2 emission pro fi le C 4 M IP Simulations, Friedlingstein et al., 2006 8

  9. Simulated Changes in Carbon Storage Hadley Center Model 1860-2100 Carbon Cycle “Hotspots”: 9

  10. Simulated Changes in Carbon Storage Hadley Center Model 1860-2100 Carbon Cycle “Hotspots”: Boreal Forests, Tundra (Permafrost) 9

  11. Simulated Changes in Carbon Storage Hadley Center Model 1860-2100 Carbon Cycle “Hotspots”: 9

  12. Simulated Changes in Carbon Storage Hadley Center Model 1860-2100 Carbon Cycle “Hotspots”: Tropical Ecosystems 9

  13. Simulated Changes in Carbon Storage Hadley Center Model 1860-2100 Carbon Cycle “Hotspots”: 9

  14. Simulated Changes in Carbon Storage Hadley Center Model 1860-2100 Carbon Cycle “Hotspots”: Soils 9

  15. Regional Responses: HadCM3LC and MPI Model Simulations Tropics N orthern Extratropics Climate effect N PP N EP C 4 M IP Simulations, Friedlingstein et al., 2006 10

  16. Global Carbon Cycle - Climate Feedbacks 11

  17. Global Carbon Cycle - Climate Feedbacks • D ominance of terrestrial sources and sinks 11

  18. Global Carbon Cycle - Climate Feedbacks • Dominance of terrestrial sources and sinks • Tropics dominate terrestrial response 11

  19. Global Carbon Cycle - Climate Feedbacks • Dominance of terrestrial sources and sinks • Tropics dominate terrestrial response • Models assume substantial CO 2 fertilization: 11

  20. Global Carbon Cycle - Climate Feedbacks • Dominance of terrestrial sources and sinks • Tropics dominate terrestrial response • Models assume substantial CO 2 fertilization: ∆ NP P NP P 0 β = = 0 . 2 − 0 . 6 ∆ C C 0 11

  21. Global Carbon Cycle - Climate Feedbacks • Dominance of terrestrial sources and sinks • Tropics dominate terrestrial response • Models assume substantial CO 2 fertilization: ∆ NP P NP P 0 β = = 0 . 2 − 0 . 6 ∆ C C 0 • Carbon cycle - climate feedback gain, range of C 4 MIP models: 11

  22. Global Carbon Cycle - Climate Feedbacks • Dominance of terrestrial sources and sinks • Tropics dominate terrestrial response • Models assume substantial CO 2 fertilization: ∆ NP P NP P 0 β = = 0 . 2 − 0 . 6 ∆ C C 0 • Carbon cycle - climate feedback gain, range of C 4 MIP models: • 4 - 20% (10 models), 11

  23. Global Carbon Cycle - Climate Feedbacks • Dominance of terrestrial sources and sinks • Tropics dominate terrestrial response • Models assume substantial CO 2 fertilization: ∆ NP P NP P 0 β = = 0 . 2 − 0 . 6 ∆ C C 0 • Carbon cycle - climate feedback gain, range of C 4 MIP models: • 4 - 20% (10 models), • 31% (HadCM3LC) 11

  24. Global Carbon Cycle - Climate Feedbacks • Dominance of terrestrial sources and sinks • Tropics dominate terrestrial response • Models assume substantial CO 2 fertilization: ∆ NP P NP P 0 β = = 0 . 2 − 0 . 6 ∆ C C 0 • Carbon cycle - climate feedback gain, range of C 4 MIP models: • 4 - 20% (10 models), • 31% (HadCM3LC) • Limitations: Land use effects, permafrost and wetlands 11

  25. Anticipated critical boreal and arctic changes • W arming ⇒ lengthening of vegetation period ⇒ increase in carbon uptake • W arming ⇒ enhanced soil decomposition ⇒ enhanced CO 2 release • W arming + drying ⇒ wetland degradation • W arming + drying ⇒ changes in fi re regimes • W arming ⇒ permafrost carbon degradation ⇒ CO 2 , CH 4 • W arming + hydrological regime shifts ⇒ ecosystem composition changes ⇒ shifts in carbon balance • Antropogenic impacts: Logging, fi re, agriculture 12

  26. Permafrost - a missing feedback link in present Earth System Models Cherskii (68.5N ,161.2E) 13

  27. ermafrost Extent 14

  28. ermafrost Extent Cherskii 14

  29. O2 CO2 CH4 Heat Permafrost Surface Respiration Thawing Aerated Zone Heat Water Table Car bon Water Flooded Zone Melting T=0C Frozen Carbon Permafrost Zimov et al., 1993 15

  30. “Critical” Carbon Content ρ w L = ρ C γ kgC -1 γ ~12.5 MJ • Caloric heat release by respiration ~10 kgC m-3 ρ C • Soil carbon content • ρ w Soil water (ice) content 35% � 350 kg m -3 • Fusion energy kg-1 L 0.334 MJ Typical values in permafrost 16

  31. Simulated Depth of Permafrost Thawing Zone with W arming Scenario of 0.1K /yr W ith heating feedback Depth N o feedback 17

  32. 1-d Model of CH 4 , CO 2 and O 2 in permafrost soil Fo Figure 1. Scheme of the permafrost carbon cycle model Khvorostyanov et al., Tellus, 2007 18

  33. Modelled soil processes • Heat conduction • Simple soil hydrology • Soil organic matter decomposition • O rganic matter decomposition to CO 2 • Methanogenesis and methanotrophy • Gas fl uxes: O 2 , CO 2 , CH 4 by diffusion, ebullition, plant transport Khvorostyanov et al., Tellus, 2007 19

  34. Model predicted CH 4 fl ux evaluation Cherskii site (68.5N ,161.2E) Khvorostyanov et al., Tellus, 2007 20

  35. KHVOROSTYANOV ET AL Biogeochemical Feedbacks in Permafrost Soils Khvorostyanov et al., Tellus, 2007 21

  36. Idealized step-change 50yr warming experiment eer R 22

  37. Atmospheric step change warming experiment (+5 °C at model year 1000) For Peer W ith metabolic heat generation W ithout metabolic heat generation Fo (a) Soil temperature ( ◦ C): talik formation when decomposi- (c) Soil temperature ( ◦ C): no talik formation when decompo- tion heat is ’On’. Contour interval is 4 ◦ C sition heat is ’Off’. Contour interval is 4 ◦ C Talik formation 23

  38. Response to F (b) Soil oxygen in g per m 3 soil (a) Soil temperature ( ◦ C) o 50 year warming r P experiment e e r R e v (c) Soil carbon density (kgC m − 3 ) (d) Methanogenesis (positive values) and methanotrophy (neg- i ative values) rates (gC m − 3 day − 1 ) e w Khvorostyanov et al., Tellus, 2007 (e) Soil respiration rate (gC m − 3 day − 1 ) (f) Soil methane in g per m 3 soil 24

  39. Limitations • 1-d approach • Hydrology • Microbiological decomposition functions 25

  40. W hy Siberia? • Siberian boreal forest is a signi fi cant component of the global carbon cycle: • ~ 10% of global terrestrial carbon (vegetation+soils) • ~ 5-10% of global terrestrial productivity • ~ 65% of Siberian forests contain permafrost • Modest anthropogenic impacts • Expected large climate change impacts • Large interannual climate variability • Fire a crucial disturbance factor • W etlands - potential for emissions of CO 2 and/or CH4: ~ 83 PgC • Permafrost soil carbon: 400PgC (global), vulnerable: 5PgC (20yr), 100PgC (100yr) 26

Recommend


More recommend