in Real Algebraic Tropical izatiou and Geometry Gurbiuatorics Extremal How I learned not to ( Or worry the tropics ) love and . Joint with : . Raymond , M . Singh , R . Thomas A • , J . Yu • F . Rincon , R . Sinn , C. Vinzant
Se RI closed . all polynomial inequalities valid ' ou S Xd z XB xd * X Bz o - binomial inequality Pure In linear inequality or logs - log Xo Ye - { Lilli 2 E Bi Yi { ( Li - pity , Zo
S → logos ) 6nelh.gl#) - right object to study 4 convex Gue - - Hadamard Property with sets - - Hu ) * Hi , ④ , - High - int - - sxuyu ) - - ⇒ x * yes x , yes
has Hadamard property ' S If then ago ) = tropes ) - trop est Liya logics ) If S semi algebraic ⇒ is a rational tropes ) is polyhedral complex . I Alessandrini )
= { dy A - - , Lu } . . xdk ) : x t ( Xd ; Y :L . The following preserve Hadamard property Monomial (1) weeps or comical lull (2) Convex - PSD symmetric A , B Eo wonder Schur product A- * B ko Hun
bae ( out ) i UVT V - 11 lone g PSD matrices tropes : ) J . Yu - Xiao ( Yi : ) ' xoxo Yoo -141 , -241020 Xu Xu Xu Also true filled mom if Ulman urials binomials or pure .
- polynomial will A Pnf support n A on khz o wowuegshte . - NTA Pat - Record wounds measures on supported on Rko at = ( SH . # def ' du , . . be htt . . Lay
env ( yakked ) NTA -_ YA :X Hkd 's . > Xdk ) drop Ctf ) ?3HnkH9o ) + flirt 10,0 ) + fail ) ( 1,21 f- ¥ ( 2,17 ( 111 ) - Miz - Uh , Moha 's Moo Moo - SS da Unified Mine SXN-ndfemi-fxx.de
hoop ( UTA ) then : the one is on A punch bars Of convex . { * = Bos x x g. Sos t . Sos - Sos t n t Xa k Etf also have - will Hardwood properly . trop LEE ) thus ( it is all g lattice p b a polytope ) g
trop ( Ej ) = puncheon or A are midpoint hat convex . - I Hah I al , Lf Eg G SCH = # Can I D (G) = # triangles n C F) how I → G # of - n -
u , y O - 9312 D ¥4 graph 19 " pm file Razbiov - Hadamard property S g ↳ invoked collection U a graph tropes ) - appear to be a rational polyhedral 6hL .
Recommend
More recommend