bessel functions
play

Bessel Functions Bernd Schr oder logo1 Bernd Schr oder - PowerPoint PPT Presentation

Overview Solving the Bessel Equation Bessel Functions Application Bessel Functions Bernd Schr oder logo1 Bernd Schr oder Louisiana Tech University, College of Engineering and Science Bessel Functions Overview Solving the Bessel


  1. Overview Solving the Bessel Equation Bessel Functions Application Bessel Functions Bernd Schr¨ oder logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

  2. Overview Solving the Bessel Equation Bessel Functions Application Why are Bessel Functions Important? logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

  3. Overview Solving the Bessel Equation Bessel Functions Application Why are Bessel Functions Important? 1. Parametric Bessel equations x 2 y ′′ + xy ′ + � λ 2 x 2 − ν 2 � y = 0 ∂ t and ∆ u = k ∂ 2 u arise when the equations ∆ u = k ∂ u ∂ t 2 are solved with separation of variables in polar or cylindrical coordinates. The function y ( r ) describes the radial part of the solution. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

  4. Overview Solving the Bessel Equation Bessel Functions Application Why are Bessel Functions Important? 1. Parametric Bessel equations x 2 y ′′ + xy ′ + � λ 2 x 2 − ν 2 � y = 0 ∂ t and ∆ u = k ∂ 2 u arise when the equations ∆ u = k ∂ u ∂ t 2 are solved with separation of variables in polar or cylindrical coordinates. The function y ( r ) describes the radial part of the solution. 2. Because 0 is a regular singular point of the equation, it is natural to attempt a solution using the method of Frobenius. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

  5. Overview Solving the Bessel Equation Bessel Functions Application Frobenius Solution for x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

  6. Overview Solving the Bessel Equation Bessel Functions Application Frobenius Solution for x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

  7. Overview Solving the Bessel Equation Bessel Functions Application Frobenius Solution for x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 ∞ c n ( n + r )( n + r − 1 ) x n + r − 2 x 2 ∑ n = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

  8. Overview Solving the Bessel Equation Bessel Functions Application Frobenius Solution for x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 ∞ ∞ c n ( n + r )( n + r − 1 ) x n + r − 2 + x c n ( n + r ) x n + r − 1 x 2 ∑ ∑ n = 0 n = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

  9. Overview Solving the Bessel Equation Bessel Functions Application Frobenius Solution for x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 ∞ ∞ λ 2 x 2 − ν 2 � ∞ c n ( n + r )( n + r − 1 ) x n + r − 2 + x c n ( n + r ) x n + r − 1 + c n x n + r x 2 ∑ ∑ � ∑ n = 0 n = 0 n = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

  10. Overview Solving the Bessel Equation Bessel Functions Application Frobenius Solution for x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 ∞ ∞ λ 2 x 2 − ν 2 � ∞ c n x n + r = 0 c n ( n + r )( n + r − 1 ) x n + r − 2 + x c n ( n + r ) x n + r − 1 + x 2 ∑ ∑ � ∑ n = 0 n = 0 n = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

  11. Overview Solving the Bessel Equation Bessel Functions Application Frobenius Solution for x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 ∞ ∞ λ 2 x 2 − ν 2 � ∞ c n x n + r = 0 c n ( n + r )( n + r − 1 ) x n + r − 2 + x c n ( n + r ) x n + r − 1 + x 2 ∑ ∑ � ∑ n = 0 n = 0 n = 0 ∞ ( n + r )( n + r − 1 ) c n x n + r ∑ n = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

  12. Overview Solving the Bessel Equation Bessel Functions Application Frobenius Solution for x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 ∞ ∞ λ 2 x 2 − ν 2 � ∞ c n x n + r = 0 c n ( n + r )( n + r − 1 ) x n + r − 2 + x c n ( n + r ) x n + r − 1 + x 2 ∑ ∑ � ∑ n = 0 n = 0 n = 0 ∞ ∞ ( n + r )( n + r − 1 ) c n x n + r + ( n + r ) c n x n + r ∑ ∑ n = 0 n = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

  13. Overview Solving the Bessel Equation Bessel Functions Application Frobenius Solution for x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 ∞ ∞ λ 2 x 2 − ν 2 � ∞ c n x n + r = 0 c n ( n + r )( n + r − 1 ) x n + r − 2 + x c n ( n + r ) x n + r − 1 + x 2 ∑ ∑ � ∑ n = 0 n = 0 n = 0 ∞ ∞ ∞ ( n + r )( n + r − 1 ) c n x n + r + ( n + r ) c n x n + r + λ 2 c n x n + r + 2 ∑ ∑ ∑ n = 0 n = 0 n = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

  14. Overview Solving the Bessel Equation Bessel Functions Application Frobenius Solution for x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 ∞ ∞ λ 2 x 2 − ν 2 � ∞ c n x n + r = 0 c n ( n + r )( n + r − 1 ) x n + r − 2 + x c n ( n + r ) x n + r − 1 + x 2 ∑ ∑ � ∑ n = 0 n = 0 n = 0 ∞ ∞ ∞ ∞ ( n + r )( n + r − 1 ) c n x n + r + ( n + r ) c n x n + r + λ 2 c n x n + r + 2 − ν 2 c n x n + r ∑ ∑ ∑ ∑ n = 0 n = 0 n = 0 n = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

  15. Overview Solving the Bessel Equation Bessel Functions Application Frobenius Solution for x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 ∞ ∞ λ 2 x 2 − ν 2 � ∞ c n x n + r = 0 c n ( n + r )( n + r − 1 ) x n + r − 2 + x c n ( n + r ) x n + r − 1 + x 2 ∑ ∑ � ∑ n = 0 n = 0 n = 0 ∞ ∞ ∞ ∞ ν 2 c n x n + r = 0 ( n + r )( n + r − 1 ) c n x n + r + ( n + r ) c n x n + r + λ 2 c n x n + r + 2 − ∑ ∑ ∑ ∑ n = 0 n = 0 n = 0 n = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

  16. Overview Solving the Bessel Equation Bessel Functions Application Frobenius Solution for x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 ∞ ∞ λ 2 x 2 − ν 2 � ∞ c n x n + r = 0 c n ( n + r )( n + r − 1 ) x n + r − 2 + x c n ( n + r ) x n + r − 1 + x 2 ∑ ∑ � ∑ n = 0 n = 0 n = 0 ∞ ∞ ∞ ∞ ν 2 c n x n + r = 0 ( n + r )( n + r − 1 ) c n x n + r + ( n + r ) c n x n + r + λ 2 c n x n + r + 2 − ∑ ∑ ∑ ∑ n = 0 n = 0 n = 0 n = 0 ∞ ( k + r )( k + r − 1 ) c k x k + r ∑ k = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

  17. Overview Solving the Bessel Equation Bessel Functions Application Frobenius Solution for x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 ∞ ∞ λ 2 x 2 − ν 2 � ∞ c n x n + r = 0 c n ( n + r )( n + r − 1 ) x n + r − 2 + x c n ( n + r ) x n + r − 1 + x 2 ∑ ∑ � ∑ n = 0 n = 0 n = 0 ∞ ∞ ∞ ∞ ν 2 c n x n + r = 0 ( n + r )( n + r − 1 ) c n x n + r + ( n + r ) c n x n + r + λ 2 c n x n + r + 2 − ∑ ∑ ∑ ∑ n = 0 n = 0 n = 0 n = 0 ∞ ∞ ( k + r )( k + r − 1 ) c k x k + r + ( k + r ) c k x k + r ∑ ∑ k = 0 k = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

  18. Overview Solving the Bessel Equation Bessel Functions Application Frobenius Solution for x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 x 2 y ′′ + xy ′ + λ 2 x 2 − ν 2 � � y = 0 ∞ ∞ λ 2 x 2 − ν 2 � ∞ c n x n + r = 0 c n ( n + r )( n + r − 1 ) x n + r − 2 + x c n ( n + r ) x n + r − 1 + x 2 ∑ ∑ � ∑ n = 0 n = 0 n = 0 ∞ ∞ ∞ ∞ ν 2 c n x n + r = 0 ( n + r )( n + r − 1 ) c n x n + r + ( n + r ) c n x n + r + λ 2 c n x n + r + 2 − ∑ ∑ ∑ ∑ n = 0 n = 0 n = 0 n = 0 ∞ ∞ ∞ ( k + r )( k + r − 1 ) c k x k + r + ( k + r ) c k x k + r + λ 2 c k − 2 x k + r ∑ ∑ ∑ k = 0 k = 0 k = 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bessel Functions

Recommend


More recommend