bayes nash price of
play

Bayes-Nash Price of Anarchy for GSP Renato Paes Leme va Tardos - PowerPoint PPT Presentation

Bayes-Nash Price of Anarchy for GSP Renato Paes Leme va Tardos Cornell University Keyword Auctions sponsored search links organic search results Keyword Auctions Keyword Auctions Auction Model $$$ b 1 $$$ b 3 b 2 $$ b 4 b 5 $$ $ b


  1. Bayes-Nash Price of Anarchy for GSP Renato Paes Leme Éva Tardos Cornell University

  2. Keyword Auctions sponsored search links organic search results

  3. Keyword Auctions

  4. Keyword Auctions

  5. Auction Model $$$ b 1 $$$ b 3 b 2 $$ b 4 b 5 $$ $ b 6 $

  6. Auction Model b b ?

  7. Auction Model Idea: Optimize against a distribution. b b b b b b b b b b b b b

  8. Bayes-Nash solution concept • Bayes-Nash models the uncertainty of other players about valuations • Values v i are independent random vars • Optimize against a distribution Goal: bound the Bayes-Nash Price of Anarchy

  9. Bayes-Nash solution concept • Bayes-Nash models the uncertainty of other players about valuations • Values v i are independent random vars • Optimize against a distribution Thm: Bayes-Nash PoA ≤ 8

  10. Model • n advertisers and n slots • v i ~ V i (valuations distribution) • player i knows v i and V j for j ≠ i • Strategy: bidding function b i (v i ) • Assumption: b i (v i ) ≤ v i

  11. Model v 1 ~ V 1 b 1 (v 1 ) α 1 v 2 ~ V 2 b 2 (v 2 ) α 2 α 3 v 3 ~ V 3 b 3 (v 3 )

  12. Model v 2 ~ V 2 b 2 (v 2 ) α 3

  13. Model σ = π -1 α j v i ~ V i b i (v i ) i = π (j) j = σ (i) Utility of player i : u i (b) = α σ (i) ( v i - b π ( σ (i) + 1) )

  14. Model α j v i ~ V i b i (v i ) i = π (j) j = σ (i) Utility of player i : u i (b) = α σ (i) ( v i - b π ( σ (i) + 1) ) next highest bid

  15. Model α j v i ~ V i b i (v i ) i = π (j) j = σ (i) Bayes-Nash equilibrium: E[u i (b i ,b -i )|v i ] ≥ E[ u i ( b’ i ,b -i )|v i ]

  16. Model α j v i ~ V i b i (v i ) i = π (j) j = σ (i) Bayes-Nash equilibrium: E[u i (b i ,b -i )|v i ] ≥ E[u i ( b’ i ,b -i )|v i ] Expectation over v -i

  17. Bayes-Nash Equilibrium v i are random variables μ( i) = slot that player i occupies in Opt (also a random variable) E[ ∑ i v i α μ (i) ] Bayes-Nash PoA = E[ ∑ i v i α σ (i) ]

  18. Related results • [PL-Tardos 09] prove a bound of 1.618 for (full information) PoA of GSP. • [EOS] [Varian] analyze full information setting • [Gomes-Sweeney 09] study Bayes-Nash equilibria of GSP and characterize symmetric equilibria.

  19. How was pure PoA proved? v π (i) α j v π (j) α i + ≥ 1 v π (j) α i v π (i) α j • We need a structural characterization

  20. How was pure PoA proved? v π (j) α i α j v π (j) + α i v π (i) ≥ α i v π (j) v π (i) α j • We need a structural characterization

  21. New Structural Characterization Lemma: v i E[ α σ (i) |v i ] + E[ α μ( i ) v πμ (i) |v i ] ≥ ¼ v i E[ α μ( i ) |v i ]

  22. New Structural Characterization Lemma: v i E[ α σ (i) |v i ] + E[ α μ( i ) v πμ (i) |v i ] ≥ ¼ v i E[ α μ( i ) |v i ] E[ ∑ i v i α π (i) ] ≥ (1/8) E[ ∑ i v i α μ (i) ]

  23. Main Theorem Lemma: v i E[ α σ (i) |v i ] + E[ α μ( i ) v πμ (i) |v i ] ≥ ¼ v i E[ α μ( i ) |v i ] Proof of main theorem: SW = (1/2) E[∑ i α i v π (i) + α σ (i) v i ] = = (1/2) E[∑ i α μ( i) v π ( μ( i)) + α σ (i) v i ] = = (1/2) E[∑ i E[ α μ( i) v π ( μ( i)) |v i ]+ v i E[ α σ (i) |v i ] ] ≥ (1/8) E[∑ i v i α μ (i) ]

  24. New Structural Characterization Lemma: v i E[ α σ (i) |v i ] + E[ α μ( i ) v πμ (i) |v i ] ≥ ¼ v i E[ α μ( i ) |v i ] How to prove it ? • Find the right deviation. • But player i doesn’t know his true slot • Solution: try all slots

  25. New Structural Characterization Lemma: v i E[ α σ (i) |v i ] + E[ α μ( i ) v πμ (i) |v i ] ≥ ¼ v i E[ α μ( i ) |v i ] How to prove it ? • Player i gets k or better if he bids > b π i (k) • But this is a random variable … • Deviation bid: 2 E[b π (k) |v i , μ (i) = k] i • Gets slot k with ½ probability (Markov)

  26. New Structural Characterization How to prove it ? • also gets slot j ≤ k whenever μ (i) = j : 2 E[b π (k) |v i , μ (i) = k] decreases with k i (here we use independence) μ (i) | • Write Nash inequalities for those deviations: v i E[ α σ (i) |v i ] ≥ Σ j ≥k ½ P(μ (i)=k|v i ) α j (v i - B k ), k

  27. New Structural Characterization How to prove it ? • Smart Dual averaging the expression: v i E[ α σ (i) |v i ] ≥ Σ j ≥k ½ P(μ (i)=k|v i ) α j (v i - B k ) , k • Maintain payments small and value large Structural characterization: v i E[ α σ (i) |v i ] + E[ α μ( i ) v πμ (i) |v i ] ≥ ¼ v i E[ α μ( i ) |v i ]

  28. New Structural Characterization How to prove it ? • Dual averaging the expression: v i E[ α σ (i) |v i ] ≥ Σ j ≥k ½ P(μ (i)=k|v i ) α j (v i - B k ) • Maintain payments small and value large Not a smoothness proof.

  29. Conclusion • Constant bound for Bayes-Nash PoA • Uniform bounds across all distributions • Future directions: • Improve the constant • Get rid of independence

Recommend


More recommend