basic elec engr basic elec engr lab lab
play

Basic Elec. Engr Basic Elec. Engr. Lab . Lab ECS 204 ECS 204 - PowerPoint PPT Presentation

Basic Elec. Engr Basic Elec. Engr. Lab . Lab ECS 204 ECS 204 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th Operational amplifier Lab 8 V2I and I2V Converters Inverting Integrator 1 V2I and I2V Converters in out


  1. Basic Elec. Engr Basic Elec. Engr. Lab . Lab ECS 204 ECS 204 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th Operational amplifier • Lab 8 V2I and I2V Converters • Inverting Integrator • 1

  2. V2I and I2V Converters in out in out L L V2I Converter I2V Converter 2

  3. V2I and I2V Converters F in out in R out L out in F R   R R     V V V 1 V F  F  out in out in   R R R R Non-inverting Amplifier Inverting Amplifier 3

  4. V2I and I2V Converters in out in out L L V out = -I in R I out = V in /R These relations hold regardless of the value of R L . 4

  5. A: Voltage-to-current converter I out = V in /R V in , V I out , mA 1 3 6 10 5

  6. B: Current-to-voltage converter V out = -I in R Current Source I in , mA V out , V 1 3 6 10 6

  7. Part C: Inverting Int Integrat grator or      i t i t i C   v t d     i C v t o R dt 1 t          0 v t v v t dt o o i RC 0 T As a Ramp Generator… Area = hT/2   v t h i   2 Zero-average input h h (DC offset = 0) Sawtooth waveform 1 T   h v t 2 7 RC o

  8. Inverting Integrator (2)      i t i t i C   v t d     i C v t o R dt 1 t          0 v t v v t dt o o i RC 0 T  An input with nonzero mean (DC offset) can saturate the op amp.   v t   i v t o 8

  9. Inverting Integrator: AC SS Analysis   Z   C V  V o i   R   1 V    i      R j C  The gain at f = 0 is unbounded.  Act like an active low pass filter , passing low frequency signals while attenuating the high frequencies. 9

  10. (w/ DC Gain Control) Inverting Integrator w/ Shunt Resistor  In practical circuit, a large resistor R p is usually shunted across the capacitor R   / / Z R   C p  C V V o i   R R V+   R V    p i   X   i   1 + R j R C v p v + - V-  Observe that at f = 0, the gain is finite. 10

  11. Inverting Integrator w/ Shunt Resistor R p  Output is not triangular. T  “Virtually triangular” if R C  C p 2 1 1 R V+   R C p 2 2 fC fR X i in p + v i v o + - V-    v t h i  1   Rp r  v t h  o 1 R r   1     exp   r   R C 2 11 fR C   p p

Recommend


More recommend