based materials for antimicrobial coatings
play

Based Materials for Antimicrobial Coatings Bogdana Simionescu 1 , - PowerPoint PPT Presentation

Versatility of Silsesquioxane- Based Materials for Antimicrobial Coatings Bogdana Simionescu 1 , Cristian Ursu 2 , Corneliu Cotofana 2 , Andreea Chibac 2 and Mihaela Olaru 2, * 1 Costin D. Nenitescu Centre of Organic Chemistry, Bucuresti,


  1. Versatility of Silsesquioxane- Based Materials for Antimicrobial Coatings Bogdana Simionescu 1 , Cristian Ursu 2 , Corneliu Cotofana 2 , Andreea Chibac 2 and Mihaela Olaru 2, * 1 “ Costin D. Nenitescu ” Centre of Organic Chemistry, Bucuresti, Romania 2 “ Petru Poni ” Institute of Macromolecular Chemistry, Iasi, Romania 1st International Electronic Conference on Materials Functional Materials and Interfaces for Biomedical Applications 26 may – 10 june 2014

  2. The world of microorganisms - microorganisms - bacteria, viruses, fungi, archaea, protozoa, and algae with characteristic cellular composition, morphology, mean of locomotion, and reproduction - beneficial in producing oxygen, decomposing organic material, providing nutrients for plants, and maintaining human health - some of them can be pathogenic and cause diseases in plants and humans - control of the contact with pathogenic organisms is an effective way to prevent being infected with diseases

  3. Schematic representation of biofilm formation Staphylococcus aureus (bacterium) Penicillium chrysogenum (fungus) Zone where bacterial growth is inhibited

  4. Ant ntimicr imicrobial obial coa coating ing – alter alterna nativ ive w e way ay to contr o control ol inf infect ections ions Pr Prevention ention fr from om the s the sour ource ce - bacteria can be killed before contact with human body - can be used for different applications - especially important for MedTech applications - surfaces of medical devices, implants, drug delivery devices a.s.o. - equally important for electrical devices and especially portable electrical devices, cell phone, notebook computer Ant ntimicr imicrobial surf obial surface ace coa coatings mus ings must e exhibit xhibit - effective control of bacteria, molds and fungi - selective activity towards undesirable microorganisms - absence of toxic effects for both the manufacturer and the consumer - durability of antimicrobial activity on treated surfaces - compatibility with other finishing agents - easy application, compatibility with common thin film processing

  5. Hybr ybrid id nanocomposi nanocomposites es wit with h silses silsesquio quioxan xane unit units  The term “nanotechnology” is used to describe materials, devices, or or str tructur uctures es with f ith fea eatur ture e siz izes es les less than than 100 100 nm nm  For or compos composite ma ite mater erials ials, pr , proper operties ies can de can devi viate fr e from om si simple mple rules ules of of m mixi ixing ng when hen ph phas ase e dom domain ains ar are e les less than than 1 m 1 micr icron on The evolution of nanocomposites SiCl 4 + H 2 O 1900 1950-1960 1970 1980 1990 2000 Silane Stöber process Sol-Gel processing Highly ordered Quantum dots Hydrolysis Fumed silica Fullerenes Nanocomposites Nanowires Carbon black Precipitated oxides Nanoparticles Nanotubes

  6. POSS polyhedral oligomeric silsesquioxanes  Improved m echanical (Young’ modulus) at low loading  Increase viscoelastic properties  Low dielectric properties  Crystallinity  Increase of the thermal properties  Flame retardancy R = H, OSi(CH 3 ) 2 H Eight corn Function, epoxy, substituted cage Nonreactive organic alcohol, C=C (R) groups for solubilization and  May possess one compatibilization or more reactive X groups suitable for further chemical reactions, Nanoscopic in size (co-) polymerization with an Si-Si or grafting distance of 0.5 nm and a R-R distance of 1.5 nm Thermally and chemically robust hybrid (organic-inorganic) framework (stable bond) - Functions: chemical modification or grafting of existing polymers (modulation of the number of grafted chains) - Polymerizable group (copolymerization with other monomers via ATRP, coordination polymerization, ring opening…)

  7. Schematic of a polyhedral oligomeric silsesquioxane (POSS) cage Commercially POSS applications - additive for heat and abrasion resistant paints, space resistant resins, precursors to ceramic matrices, dental composites, a.s.o. Silsesquioxane Silsesquio xane pr proper operties ies - Particule size = 1,5 nm - M w = 900 – 1.770 g/mol - Appearance: T8 high func. (white powder), T8 low func. (viscous liquid) Perfect nano building blocks Silsesquioxane Nanocube

  8. R (a) (b) R OH R Si R R O O R O O HO Si Si R O R O O Si O Si Si Si R Si O R O Si Si O HO R O Si O R Si O O O R O Si O Si R O O O O HO Si Si R OH Si Si Si O Si O Si O O Si O O Si O R R R R R R R R OH (c) OH OH HO HO O Si OH O Si O Si Si O Si OH OH O OH OH Si O HO OH Si O O O O Si O O OH Si Si Si Si O O Si Si O Si Si O O O Si SI O Si Si OH O O O O Si SI O O O O O O R O O Si O O Si O Si Si R 6 Si Si O Si Si O R 8 O O R 8 R 7 Silanetriol T 8 ( exo -OH) 2 T 7 (OH) 3 T 8 ( endo -OH) 2 T 6 (OH) 4 Different architectural structures of incompletely condensed silesquixanes: (a) random, (b) ladder and (c) partial-caged Si O Si Si O Si O Si O O O O O O O O O O O Si Si Si O O O O Si Si Si O O Si Si O O Si Si O O O O Si R 4 Si Si R 6 O T6 R 8 T4 T8 Schematic representation of cage-like silsesquioxanes (T 4, T 6 and T 8 structures)

  9. Antimicrobial coating with quaternary ammonium salts (i) quaternary ammonium groups polymers adsorption on bacterial cell surface and (ii) diffusion through cell wall, (iii) adsorption onto cytoplasmic membrane, (iv) disruption of cytoplasmic membrane and (v) leakage of cytoplasmic membrane constituents, and finally (vi) cell death

  10. Polymers containing quaternary ammonium groups (QAs) - advantages over other biocides – an effective action on a wide pH range, low vapor pressure, low human toxicity, as well as lack of unpleasant odors N N R X N N Si Si O O Si O N O O Si O N Si Si Si Si Si Si O O O O O O O O O O O O Si O Si Si O Si Si Si O O X O O Si Si O O Si Si O N O Si O O O N R Si Si O O Si O X Si Si N O N Si Si R N O N O O O Si O Si Si Si X = I R = C 8 H 17 N N N (a) (b) X N R Schematic representation of (a) dimethylamino-functionalized POSS; (b) Q-POSS idealized structure - synthesis of a dimethylamino-functionalized POSS quaternized (40 % quaternized degree) with 1-iodo-octane - good antimicrobial activity toward both gram-negative ( Escherichia coli ) and gram-positive ( Staphylococcus aureus ) bacteria, activity depending on alkyl chain length and charge density Majumdar, P.; Lee, E.; Gubbins, N.; Stafslien, S.J.; Daniels, J.; Thorson, C.J.; Chisholm, B.J. Synthesis and antimicrobial activity of quaternary ammonium-functionalized POSS compounds, Polymer Preprints 2008 , 49(1), 883

  11. Schematic representation of a polysilsesquioxane containing Cl N secondary n-amylammonium salt Cl N Cl N O Si Si O O O O Cl O Si Si O Cl Si Si O N O O N O Si Si N O Cl - bacteriocidal activity of several oligo- Cl N and polysilsesquioxanes with ammonium Cl N salts of variable quaternization degrees (octa(3-chloropropylsilsesquioxane) and poly(3-chloropropylsilsesquioxane) - the best antimicrobial activity, i.e., grow inhibiting of Enterococcus hirae , Staphylococcus aureus and Escherichia coli - attained for the compounds characterized by a 50 % conversion degree - the oligomers almost fully substituted with the ionic QAs units proved to be very active against gram-positive bacteria only in suspension, manifesting a lower activity in solution Chojnowski, J.; Fortuniak, W.; Rosciszewski, P.; Werel, W.; Lukasiak, J.; Kamysz, W.; Halasa, R. Polysilsesquioxanes and oligosilsesquioxanes substituted by alkylammonium salts as antibacterial biocides. J. Inorg. Organomet. Polymer Mater. 2006 , 16 , 219-230.

  12. N N R X N N Si Si O O Si O N O O Si O N Si Si Si Si Si Si O O O O O O O O O O O O Si Si Si O O Si Si Si O O X Si Si O O O O O Si Si N O O Si O O N R Si Si O O Si O X Si Si N O N Si Si R N O N O O O Si O Si Si Si X = I R = C 8 H 17 N N N (a) X (b) N R Schematic representation of (a) dimethylamino-functionalized POSS; (b) Q-POSS idealized structure - hydrosilylation of an octasilane POSS with allyldimethylamine - functionalized POSS containing eight tertiary amino groups - Q-POSS compounds with different lengths and extent of quaternization - incorporated in two different moisture-curable polysiloxane coatings - Q-POSS-based coatings possessing the lowest quaternization extent (  40 mol %) - the best antimicrobial activity - presence of Q- POSS at coating’s surface (nanoscale surface roughness) in the coatings of low quaternization Majumdar, P.; Lee, E.; Gubbins, N.; Stafslien, S.J.; Daniels, J.; Thorson, C.J.; Chisholm, B.J. Synthesis and antimicrobial activity of quaternary ammonium- functionalized POSS (Q-POSS) and polysiloxane coatings containing Q-POSS. Polymer 2009 , 50 , 1124 – 1133

Recommend


More recommend