Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions Back to the Roots Polynomial System Solving Using Linear Algebra Philippe Dreesen KU Leuven Department of Electrical Engineering ESAT-STADIUS Stadius Center for Dynamical Systems, Signal Processing and Data Analytics 1 / 42
Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions Outline Motivation and History 1 Univariate Polynomials 2 Multivariate Polynomials 3 Algebraic Optimization 4 Conclusions 5 2 / 42
Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions Four instances of polynomial root-finding problems � x − 1 � ( x − 1)( x − 3)( x − 2) = 0 ( x − 1)( x + 2) = 0 3 − ( x − 2)( x − 3) = 0 x 2 + y 2 min x 2 + 3 y 2 − 15 = 0 x,y y − 3 x 3 − 2 x 2 + 13 x − 2 y − x 2 + 2 x − 1 = 0 = 0 s . t . 3 / 42
Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions Why polynomials? Why Study Polynomial Equations? – fundamental mathematical objects – powerful modelling tools – ubiquitous in Science and Engineering (often hidden ) Systems and Control Signal Processing Computational Biology Kinematics/Robotics 4 / 42
Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions A long and rich history. . . Egypt Babylon Euclid Diophantus Al-Khwarizmi (3000BCE-300BCE) (3000BCE-539BCE) (fl. 300BCE) (c200-c284) (c780-c850) Zhu Shijie Pierre de Fermat Ren´ e Descartes Isaac Newton Gottfried Leibniz (c1260-c1320) (c1601-1665) (1596-1650) (1643-1727) (1646-1716) 5 / 42
Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions . . . leading to “Algebraic Geometry” Etienne B´ ezout Carl Friedrich Gauss Jean-Victor Poncelet Evariste Galois Arthur Cayley (1730-1783) (1777-1755) (1788-1867) (1811-1832) (1821-1895) Leopold Kronecker Edmond Laguerre James J. Sylvester Francis S. Macaulay David Hilbert (1823-1891) (1834-1886) (1814-1897) (1862-1937) (1862-1943) 6 / 42
Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions . . . leading to “Algebraic Geometry” Algebraic Geometry and Computer Algebra – large body of literature – emphasis not (anymore) on solving equations – computer algebra: symbolic manipulations (e.g., Gr¨ obner Bases) – numerical issues! Wolfgang Gr¨ obner Bruno Buchberger (1899-1980) 7 / 42
Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions . . . and (Numerical) Linear Algebra Joseph-Louis Lagrange Augustin-Louis Cauchy Hermann Grassmann Charles Babbage Ada Lovelace (1736-1813) (1789-1857) (1809-1877) (1791-1871) (1815-1852) Alan Turing John von Neumann Gene Golub Daniel Lazard Hans J. Stetter (1912-1954) (1903-1957) (1932-2007) 8 / 42
Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions . . . and (Numerical) Linear Algebra Why Linear Algebra? – comprehensible and accessible language – intuitive geometric interpretation – computationally powerful framework – well-established methods and stable numerics 9 / 42
Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions . . . and (Numerical) Linear Algebra Eigenvalue Problems Eigenvalue equation Av = λv and eigenvalue decomposition A = V Λ V − 1 Enormous importance in (numerical) linear algebra and apps – ‘understand’ the action of matrix A – at the heart of a multitude of applications: oscillations, vibrations, quantum mechanics, data analytics, graph theory, and many more 10 / 42
Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions Outline Motivation and History 1 Univariate Polynomials 2 Multivariate Polynomials 3 Algebraic Optimization 4 Conclusions 5 12 / 42
Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions Well-known facts Univariate Polynomials and Linear Algebra: Known Facts Characteristic Polynomial The eigenvalues of A are the roots of p ( λ ) = | A − λI | Companion Matrix Solving q ( x ) = 7 x 3 − 2 x 2 − 5 x + 1 = 0 leads to 0 1 0 1 1 = x 0 0 1 x x x 2 x 2 − 1 / 7 5 / 7 2 / 7 13 / 42
Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions A less well-known method Sylvester Matrix Consider two polynomial equations x 3 − 6 x 2 + 11 x − 6 f ( x ) = = ( x − 1)( x − 2)( x − 3) − x 2 + 5 x − 6 g ( x ) = = − ( x − 2)( x − 3) Common roots if | S ( f, g ) | = 0 − 6 11 − 6 1 0 0 − 6 11 − 6 1 S ( f, g ) = − 6 5 − 1 0 0 0 − 6 5 − 1 0 James Joseph Sylvester 0 0 − 6 5 − 1 14 / 42
Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions A less well-known method Sylvester’s construction can be understood from x 2 x 3 x 4 1 x − 6 11 − 6 1 0 1 1 f ( x )=0 − 6 11 − 6 1 x 1 x 2 x · f ( x )=0 x 2 x 2 − 6 5 − 1 = 0 g ( x )=0 1 2 x 3 x 3 − 6 5 − 1 x · g ( x )=0 1 2 x 4 x 4 − 6 5 − 1 x 2 · g ( x )=0 1 2 where x 1 = 2 and x 2 = 3 are the common roots of f and g 15 / 42
Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions Outline Motivation and History 1 Univariate Polynomials 2 Multivariate Polynomials 3 Algebraic Optimization 4 Conclusions 5 16 / 42
Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions Null space based Root-finding Consider the system x 2 + 3 y 2 − 15 p ( x, y ) = = 0 y − 3 x 3 − 2 x 2 + 13 x − 2 q ( x, y ) = = 0 Matrix representation of the system: Macaulay matrix M x 2 y 2 x 3 x 2 y xy 2 y 3 1 x y xy − 15 1 3 p ( x,y ) − 15 1 3 x · p ( x,y ) − 15 1 3 y · p ( x,y ) − 2 13 1 − 2 − 3 q ( x,y ) 17 / 42
Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions Null space based Root-finding x 2 + 3 y 2 − 15 p ( x, y ) = = 0 y − 3 x 3 − 2 x 2 + 13 x − 2 q ( x, y ) = = 0 Continue to enlarge the Macaulay matrix M : x 5 x 4 yx 3 y 2 x 2 y 3 xy 4 y 5 → x 2 y 2 x 3 x 2 y xy 2 y 3 x 4 x 3 yx 2 y 2 xy 3 y 4 1 x y xy p − 15 1 3 xp − 15 1 3 d = 3 yp − 15 1 3 q − 2 13 1 − 2 − 3 x 2 p − 15 1 3 xyp − 15 1 3 y 2 p d = 4 − 15 1 3 xq − 2 13 1 − 2 − 3 yq − 2 13 1 − 2 − 3 x 3 p − 15 1 3 x 2 yp − 15 1 3 xy 2 p − 15 1 3 d = 5 y 3 p − 15 1 3 x 2 q − 2 13 1 − 2 − 3 xyq − 2 13 1 − 2 − 3 y 2 q − 2 13 1 − 2 − 3 ↓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 / 42
Motivation and History Univariate Polynomials Multivariate Polynomials Algebraic Optimization Conclusions Null space based Root-finding Multivariate Vandermonde – Macaulay coefficient matrix M : basis for the null space: � × 0 0 0 � × × × 1 1 . . . 1 0 0 0 M = × × × × 0 0 0 × × × × x 1 x 2 . . . x m 0 0 0 × × × × y 1 y 2 . . . y m – solutions generate vectors in null space x 2 x 2 x 2 . . . 1 2 m x 1 y 1 x 2 y 2 . . . x m y m MK = 0 y 2 y 2 y 2 . . . 1 2 m x 3 x 3 x 3 – number of solutions m = nullity . . . m 1 2 x 2 x 2 x 2 1 y 1 2 y 2 . . . m y m x 1 y 2 x 2 y 2 x m y 2 . . . m 1 2 y 3 y 3 y 3 . . . 1 2 m x 4 x 4 x 4 . . . 1 2 4 x 3 x 3 x 3 1 y 1 2 y 2 . . . m y m x 2 1 y 2 x 2 2 y 2 x 2 m y 2 . . . 1 2 m x 1 y 3 x 2 y 3 x m y 3 . . . 1 2 m y 4 y 4 y 4 . . . m 1 2 . . . . . . . . . . . . 19 / 42
Recommend
More recommend