b 7 8 7 8 li n li and be p xilin zhang ohio university
play

( ) ( ) B 7 8 7 8 Li n, Li and Be p, Xilin Zhang - PowerPoint PPT Presentation

Radiative capture study by combining EFT with ab initio calculations: ( ) ( ) B 7 8 7 8 Li n, Li and Be p, Xilin Zhang (Ohio University) Nuclear Theory Group Seminar, LANL, Jan 15, 2014 X. Z, K. M. Nollett and D. R.


  1. Radiative capture study by combining EFT with ab initio calculations: ( ) ( ) B 7 8 7 8 Li n, γ Li and Be p, γ Xilin Zhang (Ohio University) Nuclear Theory Group Seminar, LANL, Jan 15, 2014 X. Z, K. M. Nollett and D. R. Phillips, arXiv:1311.6822; 1401.xxxx

  2. Outline • Motivations • A toy model: spinless nucleon and core • Li7 capture: spins, core excitation, leading order (LO) results • Be7 capture: nonperturbative Coulomb, LO results • Outlook: Next-to-LO • My other works: neutrino-nucleus, jet quenching in heavy ion collision, cold nuclear matter

  3. Motivations Astrophysics

  4. Solar neutrino generation Not experimentally accessible W. C. Haxton et.al., arXiv:1208.5723

  5. Li7 capture is used to constrain models of Be7 capture.

  6. A toy model γ c n − c n

  7. Gross features: p-wave Λ ~ 2 M B ~ 100 MeV 43 Li 7 γ = ~ 2 M B 57 . 8 MeV 71 Li 8 γ Shallow p-wave ~ 0 . 5 bound state Λ 1/17/2014 7

  8. Gross features: s-wave Λ ≈ 100 MeV Large s-wave scattering length L. Koester, K. Knopf, and W. Waschkowski, Z. Phys. A 312, 81 (1983) 1/17/2014 8

  9. S-wave in EFT Effective range expansion (ERE): Natural 1 1 ~ and ~ a r Λ Λ 0 0

  10. S-wave in EFT Effective range expansion (ERE): Natural 1 1 ~ and ~ a r Λ Λ 0 0 Unnatural 1 1 ~ but ~ a r γ Λ 0 0

  11. S-wave in EFT = + + ... One parameter: g (or a0)

  12. P-wave in EFT 1 1 + γ + γ = Shallow p-wave bound state: 2 4 r 0 1 a 2 1 1 Λ a ~ and r ~ Λ γ 1 1 2 Unnatural Natural

  13. P-wave in EFT

  14. P-wave in EFT = +

  15. P-wave in EFT = +

  16. P-wave in EFT = + Two parameters: Delta and h (or a1 and r1)

  17. P-wave in EFT Asymptotic normalization coefficient (ANC)

  18. P-wave in EFT Asymptotic normalization coefficient (ANC) − γ 2 2 = 2 C ∆ + γ r 3 a and r (or h and ) 1 1 1 1 1 + γ + γ = 2 3 r 0 1 a 2 1 K. M. Nollett et.al., PRC 83, 041001 (2011)

  19. Radiative capture: LO S wave scattering length Halo-EFT parameters

  20. Radiative capture: LO S wave scattering length Halo-EFT parameters C γ 1 1 ⇒ ⇒ a ~ X ~ 1 , a ~ X ~ γ Λ Λ

  21. ( ) 7 8 Li n, γ Li G. Rupak and R. Higa, Phys. Rev. Lett. 106, 222501 (2011)

  22. Scales, spins, core excitations * E 1/17/2014 22

  23. Scales, spins, core excitations * E + 3 5 IS Li7 n : S , S , D 1 2 + * 1 * 3 * IS Li7 n : S , S 0 1 1/17/2014 23

  24. Scales, spins, core excitations * E + 3 5 IS Li7 n : S , S , D 1 2 + * 1 * 3 * IS Li7 n : S , S 0 1 + + 3 5 FS(2 ) Li7 n : P , P 2 2 + + * 3 * FS(2 ) Li7 n : P 2 1/17/2014 24

  25. Scales, spins, core excitations * E + 3 5 IS Li7 n : S , S , D 1 2 + * 1 * 3 * IS Li7 n : S , S 0 1 + + 3 5 + + FS(2 ) Li7 n : P , P 3 5 FS(1 ) Li7 n : P , P 2 2 1 1 + + * 3 * + + FS(2 ) Li7 n : P * 1 * 3 * FS(1 ) Li7 n : P , P 2 1 1 1/17/2014 25

  26. Scales, spins, core excitations Λ ≈ 100 − 300 MeV L. Koester, K. Knopf, and W. Waschkowski, Z. Phys. A 312, 81 (1983) 1/17/2014 26

  27. EFT

  28. EFT

  29. EFT

  30. EFT = = = S 2 S 1 S 1 i i i >> One fine tuning in S wave

  31. EFT = = = S 2 S 1 S 1 i i i >> One fine tuning in S wave + 1 + + 1 2 , + 2 , ~ One fine tuning in P wave + 1 + 2 , = + +

  32. P-wave + 2 = + + L. Trache,et.al., Phys. Rev. C 67, 062801(R) (2003)

  33. P-wave + 2 = + + 4 parameters: 3 h + 1 Delta, or 3 C + gamma L. Trache,et.al., Phys. Rev. C 67, 062801(R) (2003)

  34. P-wave + 2 = + + 4 parameters: 3 h + 1 Delta, or 3 C + gamma 5 parameters L. Trache,et.al., Phys. Rev. C 67, 062801(R) (2003)

  35. Radiative captures: LO

  36. Radiative captures: LO >>

  37. Radiative captures: LO >> Initial total spin Si=2 γ 1 1 ⇒ ⇒ a ~ X ~ 1 , a ~ X ~ γ Λ Λ

  38. +

  39. +

  40. LO results on Li7(n,gamma)Li8(Li8*) N. K. Timofeyuk et.al., PRL 91, 232501 (2003); D. Howell et.al., PRC 88, 025804 (2013); D. Gul’ko et.al., SJNP 6, 477 (1968); E. Lynn et.al., PRC 44, 764 (1991); Y. Nagai et. al., PRC 71, 055803 (2005); J. C. Blackmon et. al., PRC 54, 383 (1996); J. E. Lynn et. al., PRC 44, 764 (1991); M. Heil et.al., Astro. J. 507, 997 (1998); W. L. Imhof et.al., PR 114, 1037 (1959). 1/17/2014 40

  41. LO results on Li7(n,gamma)Li8(Li8*) [ > 0.86] A. D. Gul’ko, S. S. Trostin, and A. Hudoklin, Sov. J. Nucl. Phys. 6, 477 (1968); J. E. Lynn, E. T. Jurney, and S. Raman, Phys. Rev. C 44, 764 (1991); Y. Nagai et. al., Phys. Rev. C 71, 055803 (2005). 1/17/2014 41

  42. LO results on Li7(n,gamma)Li8(Li8*) [ > 0.86] A. D. Gul’ko, S. S. Trostin, and A. Hudoklin, Sov. J. Nucl. Phys. 6, 477 (1968); J. E. Lynn, E. T. Jurney, and S. Raman, Phys. Rev. C 44, 764 (1991); Y. Nagai et. al., Phys. Rev. C 71, 055803 (2005). 1/17/2014 42

  43. LO results on Li7(n,gamma)Li8(Li8*) [ > 0.86] [ 0.89(1)] A. D. Gul’ko, S. S. Trostin, and A. Hudoklin, Sov. J. Nucl. Phys. 6, 477 (1968); J. E. Lynn, E. T. Jurney, and S. Raman, Phys. Rev. C 44, 764 (1991); Y. Nagai et. al., Phys. Rev. C 71, 055803 (2005). 1/17/2014 43

  44. ( ) B 7 8 Be p, γ • It is considered as isospin mirror of Li7 capture on the nucleon level • From EFT/core+proton picture, they are quite different due to strong Coulomb effect

  45. Nonperturbative Coulomb effect k C η ≡ ~ 1 k

  46. Nonperturbative Coulomb effect k C η ≡ ~ 1 k

  47. Nonperturbative Coulomb effect k C η ≡ ~ 1 k Kummer function Coulomb barrier, and phase

  48. ERE in EFT

  49. ERE in EFT

  50. ERE in EFT One parameter: g (or a0) Two parameters: Delta and h (or a1 and r1)

  51. Scales, spins, core excitations Shallow bound state * E 0 . 2 k C η = ~ 1 k 1/17/2014 51

  52. Repeat * E + 3 5 IS Be7 p : S , S , D 1 2 + * 1 * 3 * IS Be7 p : S , S 0 1 + + 3 5 FS(2 ) Be7 p : P , P 2 2 + + * 3 * FS(2 ) Be7 p : P 2 1/17/2014 52

  53. P-wave = + +

  54. P-wave = + + 4 parameters: 3 h + 1 Delta, or 3 C + gamma

  55. Radiative captures: LO

  56. Radiative captures: LO Initial total spin Si=1

  57. Radiative captures: LO Initial total spin Si=1

  58. Radiative captures: LO Initial total spin Si=1 → F j → G n → W h

  59. Radiative captures: LO ×

  60. LO results on Be7(p,gamma)B8 P. Navratil, R. Roth and S. Quaglioni, Phys. Lett. B 704, 379 (2011); C. Angulo et. al., Nucl. Phys. A 716, 211 (2003); 1/17/2014 60 G. Tabacaru, et. al., Phys. Rev. C 73, 025808 (2006)

  61. LO results on Be7(p,gamma)B8 One standard deviation in S-wave scattering lengths 1/17/2014 61 P. Navratil, R. Roth and S. Quaglioni, Phys. Lett. B 704, 379 (2011)

  62. LO results on Be7(p,gamma)B8 One standard deviation in S-wave scattering lengths Need better measurement of S-wave scattering lengths and/or effective ranges to extrapolate data to zero energy 1/17/2014 62 P. Navratil, R. Roth and S. Quaglioni, Phys. Lett. B 704, 379 (2011)

  63. LO results on Be7(p,gamma)B8 Fit to 0<E<50 keV E. G. Adelberger, et al., Rev. Mod. Phys. 83, 195 (2011) L. T. Baby, et. al., [ISOLDE Collaboration], Phys. Rev. Lett. 90, 022501 (2003); F. Hammache, et. al., Phys. Rev. Lett . 86, 3985 (2001); F. Strieder, et. al., Nucl. Phys. A 696, 219 (2001); B. W. Filippone, et. al., Phys. Rev. C 28, 2222 (1983); A. R. Junghans, et. al., Phys. Rev. C 68, 065803 (2003); A. R. Junghans, et. al., Phys. Rev. C 81, 012801 (2010).

  64. Summary • EFT (power counting)+ab initio works as expected at LO • LO need s-wave scattering length, p-wave ANCs, and binding momentum • The p-wave is a coupled-channel problem • For Be7 capture, improving s-wave measurement is important for extrapolating data to stellar energies.

  65. Outlook: NLO

  66. Outlook: NLO • Need to fix higher order couplings, i.e., need more “observables”. • Extract from ab initio calculations? • Change the boundary conditions? • Change the background fields?

  67. Outlook: NLO • Need to fix higher order couplings, i.e., need more “observables”. • Extract from ab initio calculations? • Change the boundary conditions? • Change the background fields? • Another approach by using data?

  68. Other works • Neutrino-nucleus interactions (GeV): neutral- current induced photon (motivated by MiniBooNE low energy excess), pion productions, nuclear effects [with Brian Serot] • Jet quenching in heavy ion collisions: initial state fluctuation, different phenomenological jet energy loss models, possible near-Tc enhancement [with Jinfeng Liao] • Two-loop contributions: nuclear matter, neutron matter, finite temperature [With Madappa Prakash] https://sites.google.com/site/xilinzhangphysics/

  69. MiniBooNE 69

  70. New hadronic interactions? γ Z ω , ρ J.A. Harvey, C.T. Hill, R.J. Hill, Phys. Rev. Lett. 99 , 261601 (2007), Phys. Rev. D 77 , 085017(2008). R.J. Hill, Phys. Rev. D 81, 013008 (2010), 84 017501(2011). 70

  71. 71

Recommend


More recommend