automatic generation of minimal and reduced models for
play

Automatic Generation of Minimal and Reduced Models for Structured - PowerPoint PPT Presentation

Automatic Generation of Minimal and Reduced Models for Structured Parametric Dynamical Systems Igor Pontes Duff Joint work with Peter Benner (MPI, Magdeburg) Pawan Goyal (MPI, Magdeburg) ICERM Workshop - Mathematics of Reduced Order Models


  1. Introduction –Structured Linear Dynamical Systems– Linear system (standard) Linear system (standard) Time �→ Frequency E ˙ x ( t ) = Ax ( t ) + Bu ( t ) , G ( s ) = C ( s E − A ) − 1 B . y ( t ) = Cx ( t ) . Second-order system Second-order system Time �→ Frequency M ¨ x ( t ) + D ˙ x ( t ) + Kx ( t ) = Bu ( t ) , G ( s ) = C ( s 2 M + s D + K ) − 1 B . y ( t ) = Cx ( t ) . Delay system Delay system Time �→ Frequency E ˙ x ( t ) = Ax ( t ) + A τ x ( t − τ ) + Bu ( t ) , s E − A − A τ e − sτ � − 1 B . � G ( s ) = C y ( t ) = Cx ( t ) . Integro system Integro system � t E ˙ x ( t ) = Ax ( t ) + A τ x ( τ ) dτ + Bu ( t ) , Time �→ Frequency � − 1 � s E − A − 1 G ( s ) = C s A τ B . 0 y ( t ) = Cx ( t ) . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 6/34

  2. Problem Formulation Problem Formulation Approximate the transfer function of an n -dimensional system, H ( s ) = C ( s ) K ( s ) − 1 B ( s ) , Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 7/34

  3. Problem Formulation Problem Formulation Approximate the transfer function of an n -dimensional system, H ( s ) = C ( s ) K ( s ) − 1 B ( s ) , by the transfer function of a system K ( s ) − 1 ˆ H ( s ) = ˆ C ( s ) ˆ ˆ B ( s ) , Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 7/34

  4. Problem Formulation Problem Formulation Approximate the transfer function of an n -dimensional system, H ( s ) = C ( s ) K ( s ) − 1 B ( s ) , K ( s ) B ( s ) by the transfer function of a system C ( s ) K ( s ) − 1 ˆ H ( s ) = ˆ C ( s ) ˆ ˆ B ( s ) , ⇓ of order r ≪ n , such that � H ( s ) − ˆ H ( s ) � < tolerance ∀ s. ˆ ˆ K ( s ) B ( s ) � H − ˆ = ⇒ Optimization problem: min H � . ˆ C ( s ) order ( ˆ H ) ≤ r Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 7/34

  5. Problem Formulation –Structure Preservation– Structured system C ( s ) = � k i =1 α i ( s ) C i ∈ R q × n , K ( s ) = � l i =1 β i ( s ) A i ∈ R n × n , H ( s ) = C ( s ) K ( s ) − 1 B ( s ) , B ( s ) = � m i =1 γ i ( s ) B i ∈ R n × m , α i ( s ) , β i ( s ) and γ i ( s ) are meromorphic functions (dynamical structures). Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 8/34

  6. Problem Formulation –Structure Preservation– Structured system C ( s ) = � k i =1 α i ( s ) C i ∈ R q × n , K ( s ) = � l i =1 β i ( s ) A i ∈ R n × n , H ( s ) = C ( s ) K ( s ) − 1 B ( s ) , B ( s ) = � m i =1 γ i ( s ) B i ∈ R n × m , α i ( s ) , β i ( s ) and γ i ( s ) are meromorphic functions (dynamical structures). Structured reduced system ˆ i =1 α i ( s ) ˆ C ( s ) = � k C i ∈ R q × r , ˆ i =1 β i ( s ) ˆ K ( s ) = � g A i ∈ R r × r , K ( s ) − 1 ˆ H ( s ) = ˆ ˆ C ( s ) ˆ B ( s ) , ˆ i =1 γ i ( s ) ˆ B ( s ) = � m B i ∈ R r × m . � Hence, preserve meromorphic functions, and order r ≪ n . – How to construct reduced systems, satisfying the desired goals, i.e., � H ( s ) − ˆ H ( s ) � ≤ tol . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 8/34

  7. Construction of reduced-order systems Petrov-Galerkin-type projection For given projection matrices V , W ∈ R n × r , leading to Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 9/34

  8. Construction of reduced-order systems Petrov-Galerkin-type projection For given projection matrices V , W ∈ R n × r , leading to ˆ C ( s ) = α 1 ( s ) C 1 V + α 2 ( s ) C 2 V + · · · + α k ( s ) C k V , = α 1 ( s ) ˆ C 1 + α 2 ( s ) ˆ C 2 + · · · + α ( s ) ˆ C k , K ( s ) = β 1 ( s ) W T A 1 V + · · · + β g ( s ) W T A g V , ˆ = + β 1 ( s ) ˆ A 1 + · · · + β g ( s ) ˆ A g , B ( s ) = γ 1 ( s ) W T B 1 + γ 2 ( s ) W T B 2 + · · · + γ m ( s ) W T B m , ˆ = γ 1 ( s ) ˆ B 1 + γ 2 ( s ) ˆ B 2 + · · · + γ m ( s ) ˆ B m , Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 9/34

  9. Construction of reduced-order systems Petrov-Galerkin-type projection For given projection matrices V , W ∈ R n × r , leading to ˆ C ( s ) = α 1 ( s ) C 1 V + α 2 ( s ) C 2 V + · · · + α k ( s ) C k V , = α 1 ( s ) ˆ C 1 + α 2 ( s ) ˆ C 2 + · · · + α ( s ) ˆ C k , K ( s ) = β 1 ( s ) W T A 1 V + · · · + β g ( s ) W T A g V , ˆ = + β 1 ( s ) ˆ A 1 + · · · + β g ( s ) ˆ A g , B ( s ) = γ 1 ( s ) W T B 1 + γ 2 ( s ) W T B 2 + · · · + γ m ( s ) W T B m , ˆ = γ 1 ( s ) ˆ B 1 + γ 2 ( s ) ˆ B 2 + · · · + γ m ( s ) ˆ B m , � Choice of the projection matrices? Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 9/34

  10. Some Literature Common existing approaches 1. Interpolating reduced-order systems [ Beattie/Gugercin ’09 ] H ( σ i ) = ˆ H ( σ i ) , for i = 1 , . . . , 2 r – How to choose σ i ?? Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 10/34

  11. Some Literature Common existing approaches 1. Interpolating reduced-order systems [ Beattie/Gugercin ’09 ] H ( σ i ) = ˆ H ( σ i ) , for i = 1 , . . . , 2 r – How to choose σ i ?? 2. Reduced-order modeling via balancing truncation [ Breiten ’16 ] – aims at removing the subspaces those are less important for the dynamics – Expensive to solve Lyapunov equation Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 10/34

  12. Some Literature Common existing approaches 1. Interpolating reduced-order systems [ Beattie/Gugercin ’09 ] H ( σ i ) = ˆ H ( σ i ) , for i = 1 , . . . , 2 r – How to choose σ i ?? 2. Reduced-order modeling via balancing truncation [ Breiten ’16 ] – aims at removing the subspaces those are less important for the dynamics – Expensive to solve Lyapunov equation 3. Data-driven structured realization (non-intrusive way) [ Schulze et. al ’18 ] – Required expert knowledge and not straightforward to implement. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 10/34

  13. Some Literature Common existing approaches 1. Interpolating reduced-order systems [ Beattie/Gugercin ’09 ] H ( σ i ) = ˆ H ( σ i ) , for i = 1 , . . . , 2 r – How to choose σ i ?? 2. Reduced-order modeling via balancing truncation [ Breiten ’16 ] – aims at removing the subspaces those are less important for the dynamics – Expensive to solve Lyapunov equation 3. Data-driven structured realization (non-intrusive way) [ Schulze et. al ’18 ] – Required expert knowledge and not straightforward to implement. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 10/34

  14. First-order systems –Interpolation-based MOR– An n -dimensional linear system � Transfer function ⇒ x ( t ) ˙ = Ax ( t ) + Bu ( t ) , Σ := y ( t ) = Cx ( t ) . H ( s ) := C ( s I − A ) − 1 B . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 11/34

  15. First-order systems –Interpolation-based MOR– An n -dimensional linear system � Transfer function ⇒ x ( t ) ˙ = Ax ( t ) + Bu ( t ) , Σ := y ( t ) = Cx ( t ) . H ( s ) := C ( s I − A ) − 1 B . Theorem (simplified) [ Villemagne/Skelton 1987,Grimme 1997 ] If � � ( σ 1 I − A ) − 1 B , . . . , ( σ r I − A ) − 1 B range ( V ) ⊇ span , � ( µ 1 I − A ) − 1 C , . . . , ( µ r I − A ) − T C T � range ( W ) ⊇ span , Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 11/34

  16. First-order systems –Interpolation-based MOR– An n -dimensional linear system � Transfer function ⇒ x ( t ) ˙ = Ax ( t ) + Bu ( t ) , Σ := y ( t ) = Cx ( t ) . H ( s ) := C ( s I − A ) − 1 B . Theorem (simplified) [ Villemagne/Skelton 1987,Grimme 1997 ] If � � ( σ 1 I − A ) − 1 B , . . . , ( σ r I − A ) − 1 B range ( V ) ⊇ span , � ( µ 1 I − A ) − 1 C , . . . , ( µ r I − A ) − T C T � range ( W ) ⊇ span , then H ( s ) = ˆ H ( s ) , s ∈ { σ 1 , σ r , µ 1 . . . , µ r } . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 11/34

  17. First-order systems –Reachable and observable subspaces– An n -dimensional linear system � t � ⇒ e Aσ Bu ( t − σ ) dσ Input to state map: x ( t ) = x ( t ) ˙ = Ax ( t ) + Bu ( t ) , Σ := 0 y ( t ) = Cx ( t ) . State to output map: y ( t ) = C e A t x 0 . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 12/34

  18. First-order systems –Reachable and observable subspaces– An n -dimensional linear system � t � ⇒ e Aσ Bu ( t − σ ) dσ Input to state map: x ( t ) = x ( t ) ˙ = Ax ( t ) + Bu ( t ) , Σ := 0 y ( t ) = Cx ( t ) . State to output map: y ( t ) = C e A t x 0 . Reachable and observable subspaces The reachable subspace R and the observable subspace O are the smallest subspaces of C n such that e A T t C T ∈ O for every t ≥ 0 . e A t B ∈ R and Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 12/34

  19. First-order systems –Reachable and observable subspaces– An n -dimensional linear system � t � ⇒ e Aσ Bu ( t − σ ) dσ Input to state map: x ( t ) = x ( t ) ˙ = Ax ( t ) + Bu ( t ) , Σ := 0 y ( t ) = Cx ( t ) . State to output map: y ( t ) = C e A t x 0 . Reachable and observable subspaces The reachable subspace R and the observable subspace O are the smallest subspaces of C n such that e A T t C T ∈ O for every t ≥ 0 . e A t B ∈ R and or, in the frequency domain, ( s I − A ) − T C T ∈ O for every s ∈ i R . ( s I − A ) − 1 B ∈ R and Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 12/34

  20. First-order systems –Reachable and observable subspaces– An n -dimensional linear system � t � ⇒ e Aσ Bu ( t − σ ) dσ Input to state map: x ( t ) = x ( t ) ˙ = Ax ( t ) + Bu ( t ) , Σ := 0 y ( t ) = Cx ( t ) . State to output map: y ( t ) = C e A t x 0 . Reachable and observable subspaces The reachable subspace R and the observable subspace O are the smallest subspaces of C n such that e A T t C T ∈ O for every t ≥ 0 . e A t B ∈ R and or, in the frequency domain, ( s I − A ) − T C T ∈ O for every s ∈ i R . ( s I − A ) − 1 B ∈ R and Moreover, R ⊥ and O ⊥ are respectively, the unreachable and unobservable subspaces. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 12/34

  21. First-order systems –Reachable and observable subspaces– A classical result in system theory: the unreachable ( R ⊥ ) or unobservable states ( O ⊥ ) can be removed from the dynamics, without changing the transfer function. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 13/34

  22. First-order systems –Reachable and observable subspaces– A classical result in system theory: the unreachable ( R ⊥ ) or unobservable states ( O ⊥ ) can be removed from the dynamics, without changing the transfer function. Characterization subspaces Krylov subspaces (R. Kalman): �� B A n − 1 B �� A 2 B R = range , and AB . . . �� ( A n − 1 ) T C T �� A T C T ( A 2 ) T C T C T O = range . . . , Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 13/34

  23. First-order systems –Reachable and observable subspaces– A classical result in system theory: the unreachable ( R ⊥ ) or unobservable states ( O ⊥ ) can be removed from the dynamics, without changing the transfer function. Characterization subspaces Krylov subspaces (R. Kalman): �� B A n − 1 B �� A 2 B R = range , and AB . . . �� ( A n − 1 ) T C T �� A T C T ( A 2 ) T C T C T O = range . . . , Rational Krylov subspaces [ Anderson/Antoulas 90’ ] �� ( σ 1 I − A ) − 1 B ( σ n I − A ) − 1 B �� ( σ 2 I − A ) − 1 B R = range ( R ) = range . . . , and �� ( σ n I − A ) − T C T �� ( σ 1 I − A ) − T C T ( σ 2 I − A ) − T C T O = range ( O ) = range . . . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 13/34

  24. First-order systems –Reachable and observable subspaces– A classical result in system theory: the unreachable ( R ⊥ ) or unobservable states ( O ⊥ ) can be removed from the dynamics, without changing the transfer function. Characterization subspaces Krylov subspaces (R. Kalman): �� B A n − 1 B �� A 2 B R = range , and AB . . . �� ( A n − 1 ) T C T �� A T C T ( A 2 ) T C T C T O = range . . . , Rational Krylov subspaces [ Anderson/Antoulas 90’ ] �� ( σ 1 I − A ) − 1 B ( σ n I − A ) − 1 B �� ( σ 2 I − A ) − 1 B R = range ( R ) = range . . . , and �� ( σ n I − A ) − T C T �� ( σ 1 I − A ) − T C T ( σ 2 I − A ) − T C T O = range ( O ) = range . . . Notice: R = V and O = W are the same matrices for interpolation based MOR. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 13/34

  25. First-order systems –Minimal realization– � ( σ 1 I − A ) − 1 B ( σ n I − A ) − 1 B � ( σ 2 I − A ) − 1 B R = . . . , and � ( σ n I − A ) − T C T � ( σ 1 I − A ) − T C T ( σ 2 I − A ) − T C T O = . . . Minimal order [ Anderson/Antoulas 90’ ] � order of the minimal realization obtained by �� �� O T R O T AR rank = removing unreachable and unobservable states Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 14/34

  26. First-order systems –Minimal realization– � ( σ 1 I − A ) − 1 B ( σ n I − A ) − 1 B � ( σ 2 I − A ) − 1 B R = . . . , and � ( σ n I − A ) − T C T � ( σ 1 I − A ) − T C T ( σ 2 I − A ) − T C T O = . . . Minimal order [ Anderson/Antoulas 90’ ] � order of the minimal realization obtained by �� �� O T R O T AR rank = removing unreachable and unobservable states Construction of minimal or reduced-order approximation e.g., [ Mayo/Antoulas ’07 ] Matrices O T R and O T AR allow us to find appropriate projection subspaces V and W � Construction of a minimal system or reduced-order system. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 14/34

  27. An Illustrative Example A demo example H ( s ) = C ( s E − A ) − 1 B ,         − 1 − 1 − 1 1 0 0 1 1 C T =  ,  ,  ,  , 0 1 0 0 − 2 − 1 2 0 E = A = B =     0 0 1 0 0 − 3 1 0 Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 15/34

  28. An Illustrative Example A demo example H ( s ) = C ( s E − A ) − 1 B ,         1 0 0 − 1 − 1 1 1 − 1 C T =  ,  ,  ,  , 0 1 0 0 − 2 − 1 2 0 E = A = B =     0 0 1 0 0 − 3 1 0 Decay of singular values 10 5 Singular values 10 − 10 10 − 25 2 4 6 k Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 15/34

  29. An Illustrative Example A demo example H ( s ) = C ( s E − A ) − 1 B ,         − 1 − 1 − 1 1 0 0 1 1 C T =  ,  ,  ,  , 0 1 0 0 − 2 − 1 2 0 E = A = B =     0 0 1 0 0 − 3 1 0 Construction of a minimal system � ˆ � H ( s ) − ˆ � H ( s ) � , n = 3 H ( s ) � , r = 2 H ( s ) � 10 0 10 − 16 10 − 1 10 − 18 10 − 2 10 − 2 10 − 1 10 − 2 10 − 1 10 0 10 1 10 2 10 0 10 1 10 2 Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 15/34

  30. Structured Transfer Function –Interpolation– � Can we extend these ideas to structure linear systems? An n -dimensional structured linear system Transfer function H ( s ) = C ( s ) K ( s ) − 1 B ( s ) , . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 16/34

  31. Structured Transfer Function –Interpolation– � Can we extend these ideas to structure linear systems? An n -dimensional structured linear system Transfer function H ( s ) = C ( s ) K ( s ) − 1 B ( s ) , . Theorem (simplified) [ Beattie/Gugercin ’09 ] If � � K ( σ 1 ) − 1 B ( σ 1 ) , . . . , K ( σ r ) − 1 B ( σ r ) range ( V ) ⊇ span , K ( µ 1 ) − T C ( µ 1 ) T , . . . , K ( µ r ) − T C ( µ r ) T � � range ( W ) ⊇ span , Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 16/34

  32. Structured Transfer Function –Interpolation– � Can we extend these ideas to structure linear systems? An n -dimensional structured linear system Transfer function H ( s ) = C ( s ) K ( s ) − 1 B ( s ) , . Theorem (simplified) [ Beattie/Gugercin ’09 ] If � � K ( σ 1 ) − 1 B ( σ 1 ) , . . . , K ( σ r ) − 1 B ( σ r ) range ( V ) ⊇ span , K ( µ 1 ) − T C ( µ 1 ) T , . . . , K ( µ r ) − T C ( µ r ) T � � range ( W ) ⊇ span , then H ( s ) = ˆ H ( s ) , s ∈ { σ 1 , σ r , µ 1 . . . , µ r } . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 16/34

  33. Structured Transfer Function –Reachability and observability– An n -dimensional linear system Transfer function ⇒ Input to state map: X ( s ) = K ( s ) − 1 B ( s ) U ( s ) State to output map: Y ( s ) = C ( s ) K ( s ) − 1 X ( s ) . H ( s ) = C ( s ) K ( s ) − 1 B ( s ) , . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 17/34

  34. Structured Transfer Function –Reachability and observability– An n -dimensional linear system Transfer function ⇒ Input to state map: X ( s ) = K ( s ) − 1 B ( s ) U ( s ) State to output map: Y ( s ) = C ( s ) K ( s ) − 1 X ( s ) . H ( s ) = C ( s ) K ( s ) − 1 B ( s ) , . Reachable and observable subspaces for structured systems The reachable subspace R and the observable subspace O are the smallest subspaces of C n such that K ( s ) − T C ( s ) T ∈ O for every s ∈ i R . K ( s ) − 1 B ( s ) ∈ R and Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 17/34

  35. Structured Transfer Function –Reachability and observability– An n -dimensional linear system Transfer function ⇒ Input to state map: X ( s ) = K ( s ) − 1 B ( s ) U ( s ) State to output map: Y ( s ) = C ( s ) K ( s ) − 1 X ( s ) . H ( s ) = C ( s ) K ( s ) − 1 B ( s ) , . Reachable and observable subspaces for structured systems The reachable subspace R and the observable subspace O are the smallest subspaces of C n such that K ( s ) − T C ( s ) T ∈ O for every s ∈ i R . K ( s ) − 1 B ( s ) ∈ R and Moreover, R ⊥ and O ⊥ are respectively, the unreachable and unobservable subspaces. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 17/34

  36. Structured Transfer Function –Reachability and observability– An n -dimensional linear system Transfer function ⇒ Input to state map: X ( s ) = K ( s ) − 1 B ( s ) U ( s ) State to output map: Y ( s ) = C ( s ) K ( s ) − 1 X ( s ) . H ( s ) = C ( s ) K ( s ) − 1 B ( s ) , . Reachable and observable subspaces for structured systems The reachable subspace R and the observable subspace O are the smallest subspaces of C n such that K ( s ) − T C ( s ) T ∈ O for every s ∈ i R . K ( s ) − 1 B ( s ) ∈ R and Moreover, R ⊥ and O ⊥ are respectively, the unreachable and unobservable subspaces. A result in for structured linear systems: the unreachable ( R ⊥ ) or unobservable states ( O ⊥ ) can be removed from the dynamics, without changing the transfer function. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 17/34

  37. Structured Transfer Function –Reachability and observability– Structured transfer function Consider an n-dimensional linear system, whose structure transfer function is given by H ( s ) := C ( s ) K ( s ) − 1 B ( s ) . Characterization Controllable and Observable Subspaces (simplified) [ Benner/Goyal/P. ’19 ] Let � K ( σ 1 ) − 1 B ( σ 1 ) K ( σ g ) − 1 B ( σ g ) � K ( σ 2 ) − 1 B ( σ 2 ) R = . . . , � K ( σ 1 ) − T C ( σ 1 ) T K ( σ 2 ) − T C ( σ 2 ) T K ( σ g ) − T C ( σ g ) T � O = . . . . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 18/34

  38. Structured Transfer Function –Reachability and observability– Structured transfer function Consider an n-dimensional linear system, whose structure transfer function is given by H ( s ) := C ( s ) K ( s ) − 1 B ( s ) . Characterization Controllable and Observable Subspaces (simplified) [ Benner/Goyal/P. ’19 ] Let � K ( σ 1 ) − 1 B ( σ 1 ) K ( σ g ) − 1 B ( σ g ) � K ( σ 2 ) − 1 B ( σ 2 ) R = . . . , � K ( σ 1 ) − T C ( σ 1 ) T K ( σ 2 ) − T C ( σ 2 ) T K ( σ g ) − T C ( σ g ) T � O = . . . . Then Reachable subspace: R = range ( R ) . Observable subspace: O = range ( O ) . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 18/34

  39. Structured Transfer Function –Reachability and observability– Structured transfer function Consider an n-dimensional linear system, whose structure transfer function is given by H ( s ) := C ( s ) K ( s ) − 1 B ( s ) . Characterization Controllable and Observable Subspaces (simplified) [ Benner/Goyal/P. ’19 ] Let � K ( σ 1 ) − 1 B ( σ 1 ) K ( σ g ) − 1 B ( σ g ) � K ( σ 2 ) − 1 B ( σ 2 ) R = . . . , � K ( σ 1 ) − T C ( σ 1 ) T K ( σ 2 ) − T C ( σ 2 ) T K ( σ g ) − T C ( σ g ) T � O = . . . . Then Reachable subspace: R = range ( R ) . Observable subspace: O = range ( O ) . Notice: R = V and O = W are the same matrices for interpolation based MOR. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 18/34

  40. Structured Transfer Function –Minimal realization– Structured transfer function Consider an n-dimensional linear system, whose structure transfer function is given by l � H ( s ) := C ( s ) K ( s ) − 1 B ( s ) , with K ( s ) = β i ( s ) A i , i =1 and let � � K ( σ 1 ) − 1 B ( σ 1 ) K ( σ 2 ) − 1 B ( σ 2 ) K ( σ N ) − 1 B ( σ N ) R = . . . , � K ( σ 1 ) − T C ( σ 1 ) T K ( σ 2 ) − T C ( σ 2 ) T K ( σ N ) − T C ( σ N ) T � O = . . . . such that R = range ( R ) and O = range ( O ) . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 19/34

  41. Structured Transfer Function –Minimal realization– Structured transfer function Consider an n-dimensional linear system, whose structure transfer function is given by l � H ( s ) := C ( s ) K ( s ) − 1 B ( s ) , with K ( s ) = β i ( s ) A i , i =1 and let � � K ( σ 1 ) − 1 B ( σ 1 ) K ( σ 2 ) − 1 B ( σ 2 ) K ( σ N ) − 1 B ( σ N ) R = . . . , � K ( σ 1 ) − T C ( σ 1 ) T K ( σ 2 ) − T C ( σ 2 ) T K ( σ N ) − T C ( σ N ) T � O = . . . . such that R = range ( R ) and O = range ( O ) . Minimal order (simplified) [ Benner/Goyal/P. ’19 ] � order of the minimal realization obtained by �� �� O T A 1 R O T A l R rank . . . = removing unreachable and unobservable states Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 19/34

  42. Structured Transfer Function –Towards model reduction– We propose a method enabling to identify simultaneously the states that are unreachable and unobservable. Assume     O T A 1 R . �� �� O T A 1 R O T A l R   .   rank = rank  = r, . . . .    O T A l R with range ( R ) = R and range ( O ) = O . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 20/34

  43. Structured Transfer Function –Towards model reduction– We propose a method enabling to identify simultaneously the states that are unreachable and unobservable. Assume     O T A 1 R . �� �� O T A 1 R O T A l R   .   rank = rank  = r, . . . .    O T A l R with range ( R ) = R and range ( O ) = O . Then, we consider the compact SVDs  O T A 1 R  . � O T A 1 R O T A l R � = W 1 Σ l ˜  = ˜ V T   W Σ r V T . . . . and 1 . .  O T A l R Let W := OW 1 and V := RV 1 be two projection matrices and let us consider the lower-order K ( s ) − 1 ˆ realization ˆ C ( s ) ˆ B ( s ) constructed by Petrov-Galerkin projection. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 20/34

  44. Structured Transfer Function –Towards model reduction– Petrov-Galerkin projections: W := OW 1 and V := RV 1 Theorem [ Benner/Goyal/P. ’19 ] K ( s ) − 1 ˆ The lower-order system ˆ C ( s ) ˆ B ( s ) of order r , obtained by Petrov-Galerkin projection with V and W , realizes the original transfer function, i.e., K ( s ) − 1 ˆ C ( s ) ˆ ˆ B ( s ) = C ( s ) K ( s ) − 1 B ( s ) for every s ∈ i R . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 21/34

  45. Structured Transfer Function –Towards model reduction– Petrov-Galerkin projections: W := OW 1 and V := RV 1 Theorem [ Benner/Goyal/P. ’19 ] K ( s ) − 1 ˆ The lower-order system ˆ C ( s ) ˆ B ( s ) of order r , obtained by Petrov-Galerkin projection with V and W , realizes the original transfer function, i.e., K ( s ) − 1 ˆ C ( s ) ˆ ˆ B ( s ) = C ( s ) K ( s ) − 1 B ( s ) for every s ∈ i R . Determine dominate reachable and observable subspaces The proposed procedure remove uncontrollable and unobservable subspaces simultaneously. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 21/34

  46. Structured Transfer Function –Towards model reduction– Petrov-Galerkin projections: W := OW 1 and V := RV 1 Theorem [ Benner/Goyal/P. ’19 ] K ( s ) − 1 ˆ The lower-order system ˆ C ( s ) ˆ B ( s ) of order r , obtained by Petrov-Galerkin projection with V and W , realizes the original transfer function, i.e., K ( s ) − 1 ˆ C ( s ) ˆ ˆ B ( s ) = C ( s ) K ( s ) − 1 B ( s ) for every s ∈ i R . Determine dominate reachable and observable subspaces The proposed procedure remove uncontrollable and unobservable subspaces simultaneously. Neglecting small singular values leads to reduced-order models. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 21/34

  47. Structured Transfer Function –Towards model reduction– Petrov-Galerkin projections: W := OW 1 and V := RV 1 Theorem [ Benner/Goyal/P. ’19 ] K ( s ) − 1 ˆ The lower-order system ˆ C ( s ) ˆ B ( s ) of order r , obtained by Petrov-Galerkin projection with V and W , realizes the original transfer function, i.e., K ( s ) − 1 ˆ C ( s ) ˆ ˆ B ( s ) = C ( s ) K ( s ) − 1 B ( s ) for every s ∈ i R . Determine dominate reachable and observable subspaces The proposed procedure remove uncontrollable and unobservable subspaces simultaneously. Neglecting small singular values leads to reduced-order models. Like balanced truncation, order the vectors in order of their importance. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 21/34

  48. Algorithm to Construct Structured ROMs Algorithm: Dominant Reachable and Observable Projection ( DROP ) 1. Take σ i , µ i , i = 1 , . . . , N . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 22/34

  49. Algorithm to Construct Structured ROMs Algorithm: Dominant Reachable and Observable Projection ( DROP ) 1. Take σ i , µ i , i = 1 , . . . , N . � � K ( σ 1 ) − 1 B ( σ 1 ) , . . . , K ( σ N ) − 1 B ( σ N ) 2. Compute R = . � K ( µ 1 ) − T C ( µ 1 ) T , . . . , K ( µ N ) − T C ( µ N ) T � 3. Compute O = . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 22/34

  50. Algorithm to Construct Structured ROMs Algorithm: Dominant Reachable and Observable Projection ( DROP ) 1. Take σ i , µ i , i = 1 , . . . , N . � � K ( σ 1 ) − 1 B ( σ 1 ) , . . . , K ( σ N ) − 1 B ( σ N ) 2. Compute R = . � K ( µ 1 ) − T C ( µ 1 ) T , . . . , K ( µ N ) − T C ( µ N ) T � 3. Compute O = . 4. Determine L ( i ) = O T A i R . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 22/34

  51. Algorithm to Construct Structured ROMs Algorithm: Dominant Reachable and Observable Projection ( DROP ) 1. Take σ i , µ i , i = 1 , . . . , N . � � K ( σ 1 ) − 1 B ( σ 1 ) , . . . , K ( σ N ) − 1 B ( σ N ) 2. Compute R = . � K ( µ 1 ) − T C ( µ 1 ) T , . . . , K ( µ N ) − T C ( µ N ) T � 3. Compute O = . 4. Determine L ( i ) = O T A i R . 5. Compute singular value decomposition:     L (1) . L (1) , . . . , L ( l ) ��     � Y 1 , Σ 1 , X 1 � = svd �� � Y 2 , Σ 2 , X 2 � = svd . ,  .   .      L ( l ) Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 22/34

  52. Algorithm to Construct Structured ROMs Algorithm: Dominant Reachable and Observable Projection ( DROP ) 1. Take σ i , µ i , i = 1 , . . . , N . � � K ( σ 1 ) − 1 B ( σ 1 ) , . . . , K ( σ N ) − 1 B ( σ N ) 2. Compute R = . � K ( µ 1 ) − T C ( µ 1 ) T , . . . , K ( µ N ) − T C ( µ N ) T � 3. Compute O = . 4. Determine L ( i ) = O T A i R . 5. Compute singular value decomposition:     L (1) . L (1) , . . . , L ( l ) ��     � Y 1 , Σ 1 , X 1 � = svd �� � Y 2 , Σ 2 , X 2 � = svd . ,  .   .      L ( l ) 6. Determine projection matrices: V := RX 2 (: , 1 : r ) , W := OY 1 (: , 1 : r ) . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 22/34

  53. Algorithm to Construct Structured ROMs Algorithm: Dominant Reachable and Observable Projection ( DROP ) 1. Take σ i , µ i , i = 1 , . . . , N . � � K ( σ 1 ) − 1 B ( σ 1 ) , . . . , K ( σ N ) − 1 B ( σ N ) 2. Compute R = . � K ( µ 1 ) − T C ( µ 1 ) T , . . . , K ( µ N ) − T C ( µ N ) T � 3. Compute O = . 4. Determine L ( i ) = O T A i R . 5. Compute singular value decomposition:     L (1) . L (1) , . . . , L ( l ) ��     � Y 1 , Σ 1 , X 1 � = svd �� � Y 2 , Σ 2 , X 2 � = svd . ,  .   .      L ( l ) 6. Determine projection matrices: V := RX 2 (: , 1 : r ) , W := OY 1 (: , 1 : r ) . 7. Determine reduced-order system K ( s ) = W T K ( s ) V , B ( s ) = W T B ( s ) , ˆ ˆ ˆ C ( s ) = C ( s ) V . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 22/34

  54. Algorithm to Construct Structured ROMs Can be easily parallarized Algorithm: Dominant Reachable and Observable Projection ( DROP ) not need to solve all shifted systems 1. Take σ i , µ i , i = 1 , . . . , N . Make use of Low-rank solvers. � � K ( σ 1 ) − 1 B ( σ 1 ) , . . . , K ( σ N ) − 1 B ( σ N ) 2. Compute R = . � K ( µ 1 ) − T C ( µ 1 ) T , . . . , K ( µ N ) − T C ( µ N ) T � 3. Compute O = . 4. Determine L ( i ) = O T A i R . 5. Compute singular value decomposition:     L (1) . L (1) , . . . , L ( l ) ��     � Y 1 , Σ 1 , X 1 � = svd �� � Y 2 , Σ 2 , X 2 � = svd . ,  .   .      L ( l ) 6. Determine projection matrices: V := RX 2 (: , 1 : r ) , W := OY 1 (: , 1 : r ) . 7. Determine reduced-order system K ( s ) = W T K ( s ) V , B ( s ) = W T B ( s ) , ˆ ˆ ˆ C ( s ) = C ( s ) V . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 22/34

  55. Algorithm to Construct Structured ROMs Can be easily parallarized Algorithm: Dominant Reachable and Observable Projection ( DROP ) not need to solve all shifted systems 1. Take σ i , µ i , i = 1 , . . . , N . Make use of Low-rank solvers. � � K ( σ 1 ) − 1 B ( σ 1 ) , . . . , K ( σ N ) − 1 B ( σ N ) 2. Compute R = . � K ( µ 1 ) − T C ( µ 1 ) T , . . . , K ( µ N ) − T C ( µ N ) T � 3. Compute O = . 4. Determine L ( i ) = O T A i R . 5. Compute singular value decomposition:     L (1) . L (1) , . . . , L ( l ) ��     � Y 1 , Σ 1 , X 1 � = svd �� � Y 2 , Σ 2 , X 2 � = svd . ,  .   .      L ( l ) Efficient variant of SVDs can be 6. Determine projection matrices: V := RX 2 (: , 1 : r ) , W := OY 1 (: , 1 : r ) . applied including randomized SVD. 7. Determine reduced-order system K ( s ) = W T K ( s ) V , B ( s ) = W T B ( s ) , ˆ ˆ ˆ C ( s ) = C ( s ) V . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 22/34

  56. Low Rank Solvers for Sylvester Equations If we take enough points ( σ i ) , the matrix � � K ( σ 1 ) − 1 B ( σ 1 ) K ( σ N ) − 1 B ( σ N ) R = . . . , encodes the C n reachable subspace. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 23/34

  57. Low Rank Solvers for Sylvester Equations If we take enough points ( σ i ) , the matrix � � K ( σ 1 ) − 1 B ( σ 1 ) K ( σ N ) − 1 B ( σ N ) R = . . . , encodes the C n reachable subspace. Notice that R solves l m � � A i RM i = B i b i , i =1 i =1 where M i = diag ( β i ( σ 1 ) , . . . , β i ( σ N )) and b i = [ γ i ( σ 1 ) , . . . , γ i ( σ N )] . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 23/34

  58. Low Rank Solvers for Sylvester Equations If we take enough points ( σ i ) , the matrix � � K ( σ 1 ) − 1 B ( σ 1 ) K ( σ N ) − 1 B ( σ N ) R = . . . , encodes the C n reachable subspace. Notice that R solves l m � � A i RM i = B i b i , i =1 i =1 where M i = diag ( β i ( σ 1 ) , . . . , β i ( σ N )) and b i = [ γ i ( σ 1 ) , . . . , γ i ( σ N )] . It is a generalized Sylvester equation. Low-rank solution is suitable. Truncated low-rank methods for generalized Sylveter equation. [ Kressner, Sirkovic 15’ ] Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 23/34

  59. Parametric extension –Parametric Structured Linear Systems– We also consider dynamical systems that are linear in state and parameterized. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 24/34

  60. Parametric extension –Parametric Structured Linear Systems– We also consider dynamical systems that are linear in state and parameterized. Parametric Butterfly Gyroscope [ morwiki, Modified Gyroscope ] M ( d )¨ x ( t ) + D ( d, θ ) ˙ x ( t ) + K ( θ ) = Bu ( t ) , y ( t ) = Cx ( t ) , where M ( d ) = M 1 + d M 2 ∈ R n , D ( d, θ ) = θ ( D 1 + d D 2 ) , Figure: Semantic gyroscope diagram. K ( d ) = T 1 + 1 d T 2 + d T 3 . Parameters and frequency range: 10 − 5 , 10 − 7 � θ ∈ � , d ∈ � 1 , 2 � f ∈ � 0 . 025 , 40 � . Order of the system: 17 , 913 . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 24/34

  61. Parametric extension –Problem formulation– Parametric Problem Formulation Approximate the transfer function of an n -dimensional system, K ( s, p ) B ( s, p ) H ( s, p ) = C ( s, p ) K ( s, p ) − 1 B ( s, p ) , by the transfer function of a system C ( s, p ) K ( s, p ) − 1 ˆ H ( s, p ) = ˆ ˆ C ( s, p ) ˆ B ( s, p ) , ⇓ of order r ≪ n , such that ˆ ˆ K ( s, p ) B ( s, p ) � H ( s, p ) − ˆ H ( s, p ) � < tolerance ∀ s and ∀ p . ˆ C ( s, p ) Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 25/34

  62. Parametric extension –Parametric transfer function– Parametric structured linear system C ( s, p ) = � k i =1 α i ( s, p ) C i ∈ R q × n , K ( s, p ) = � l i =1 β i ( s, p ) A i ∈ R n × n , H ( s ) = C ( s, p ) K ( s, p ) − 1 B ( s, p ) , B ( s, p ) = � m i =1 γ i ( s, p ) B i ∈ R n × m , Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 26/34

  63. Parametric extension –Parametric transfer function– Parametric structured linear system C ( s, p ) = � k i =1 α i ( s, p ) C i ∈ R q × n , K ( s, p ) = � l i =1 β i ( s, p ) A i ∈ R n × n , H ( s ) = C ( s, p ) K ( s, p ) − 1 B ( s, p ) , B ( s, p ) = � m i =1 γ i ( s, p ) B i ∈ R n × m , Reachable and observable subspaces for parametric structured systems The reachable subspace R and the observable subspace O are the smallest subspaces of C n such that K ( s, p ) − T C ( s, p ) T ∈ O for every s ∈ i R and p ∈ Ω . K ( s, p ) − 1 B ( s, p ) ∈ R and Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 26/34

  64. Parametric extension –Parametric transfer function– Parametric structured linear system C ( s, p ) = � k i =1 α i ( s, p ) C i ∈ R q × n , K ( s, p ) = � l i =1 β i ( s, p ) A i ∈ R n × n , H ( s ) = C ( s, p ) K ( s, p ) − 1 B ( s, p ) , B ( s, p ) = � m i =1 γ i ( s, p ) B i ∈ R n × m , Reachable and observable subspaces for parametric structured systems The reachable subspace R and the observable subspace O are the smallest subspaces of C n such that K ( s, p ) − T C ( s, p ) T ∈ O for every s ∈ i R and p ∈ Ω . K ( s, p ) − 1 B ( s, p ) ∈ R and � � K ( σ 1 , p 1 ) − 1 B ( σ 1 , p 1 ) K ( σ 2 . p 2 ) − 1 B ( σ 2 , p 2 ) K ( σ g , p g ) − 1 B ( σ g , p g ) R = . . . , � K ( σ 1 , p 1 ) − T C ( σ 1 , p 1 ) T K ( σ 2 , p 2 ) − T C ( σ 2 , p 2 ) T K ( σ g , p g ) − T C ( σ g , p g ) T � O = . . . . Then, if we have enough interpolation points, R = range ( R ) and O = range ( O ) . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 26/34

  65. Parametric extension –Minimal and reduced order model– Structured transfer function Consider an n-dimensional linear system, whose structure transfer function is given by l � H ( s, p ) := C ( s, p ) K ( s, p ) − 1 B ( s, p ) , K ( s, p ) = with β i ( s, p ) A i , i =1 Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 27/34

  66. Parametric extension –Minimal and reduced order model– Structured transfer function Consider an n-dimensional linear system, whose structure transfer function is given by l � H ( s, p ) := C ( s, p ) K ( s, p ) − 1 B ( s, p ) , K ( s, p ) = with β i ( s, p ) A i , i =1 Minimal order (simplified) [ Benner/Goyal/P. ’19 ] � order of the minimal realization obtained by �� �� O T A 1 R O T A l R rank = . . . removing unreachable and unobservable states Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 27/34

  67. Parametric extension –Minimal and reduced order model– Structured transfer function Consider an n-dimensional linear system, whose structure transfer function is given by l � H ( s, p ) := C ( s, p ) K ( s, p ) − 1 B ( s, p ) , K ( s, p ) = with β i ( s, p ) A i , i =1 Minimal order (simplified) [ Benner/Goyal/P. ’19 ] � order of the minimal realization obtained by �� �� O T A 1 R O T A l R rank = . . . removing unreachable and unobservable states Dominant Reachable and Observable Projection ( DROP ) The proposed procedure remove uncontrollable and unobservable subspaces simultaneously. Neglecting small singular values leads to reduced-order models. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 27/34

  68. Numerical Examples –Delay demo example– A time-delay demo system s I − A 1 − A 2 e − s � − 1 B � H ( s ) = C T         − 1 0 0 1 1 1 1 1  ,  ,  , A 1 = 0 − 1 0 A 2 = 0 0 0 B = 0 C = 1 ,      0 0 − 1 0 0 0 0 0 Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 28/34

  69. Numerical Examples –Delay demo example– A time-delay demo system s I − A 1 − A 2 e − s � − 1 B � H ( s ) = C T         − 1 0 0 1 1 1 1 1  ,  ,  , A 1 = 0 − 1 0 A 2 = 0 0 0 B = 0 C = 1 ,      0 0 − 1 0 0 0 0 0 Let us construct, for σ i = [1 , 2 , 3 , 4 , 5 , 6] , K ( σ 1 ) − 1 B K ( σ 6 ) − 1 B R = � � . . . , K ( σ 1 ) − T C T K ( σ 6 ) − T C T � � O = . . . . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 28/34

  70. Numerical Examples –Delay demo example– A time-delay demo system s I − A 1 − A 2 e − s � − 1 B � H ( s ) = C T         − 1 0 0 1 1 1 1 1  ,  ,  , A 1 = 0 − 1 0 A 2 = 0 0 0 B = 0 C = 1 ,      0 0 − 1 0 0 0 0 0 Let us construct, for σ i = [1 , 2 , 3 , 4 , 5 , 6] , K ( σ 1 ) − 1 B K ( σ 6 ) − 1 B R = � � . . . , K ( σ 1 ) − T C T K ( σ 6 ) − T C T � � O = . . . . � nonreachable rank ( R ) = 2 , rank ( O ) = 1 . � nonobservable Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 28/34

  71. Numerical Examples –Delay demo example– A time-delay demo system s I − A 1 − A 2 e − s � − 1 B � H ( s ) = C T         − 1 0 0 1 1 1 1 1  ,  ,  , A 1 = 0 − 1 0 A 2 = 0 0 0 B = 0 C = 1 ,      0 0 − 1 0 0 0 0 0 Let us construct, for σ i = [1 , 2 , 3 , 4 , 5 , 6] , Then, using DROP , we get the projection matrices K ( σ 1 ) − 1 B K ( σ 6 ) − 1 B R = � � . . . , K ( σ 1 ) − T C T K ( σ 6 ) − T C T � � O = . . . . V = RX (: , 1) and W = OY (: , 1) . � nonreachable rank ( R ) = 2 , rank ( O ) = 1 . � nonobservable O T R O T A 1 R O T A 2 R �� �� rank = 1 . (minimal realization order) Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 28/34

  72. Numerical Examples –Delay demo example– A time-delay demo system s I − A 1 − A 2 e − s � − 1 B � H ( s ) = C T         − 1 0 0 1 1 1 1 1  ,  ,  , A 1 = 0 − 1 0 A 2 = 0 0 0 B = 0 C = 1 ,      0 0 − 1 0 0 0 0 0 Let us construct, for σ i = [1 , 2 , 3 , 4 , 5 , 6] , Then, using DROP , we get the projection matrices K ( σ 1 ) − 1 B K ( σ 6 ) − 1 B R = � � . . . , K ( σ 1 ) − T C T K ( σ 6 ) − T C T � � O = . . . . V = RX (: , 1) and W = OY (: , 1) . The ˆ H obtained using V and W satisfies � nonreachable rank ( R ) = 2 , rank ( O ) = 1 . � nonobservable H ( s ) = ˆ H ( s ) , ∀ s. O T R O T A 1 R O T A 2 R �� �� rank = 1 . (minimal realization order) Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 28/34

  73. Numerical Examples –Delay demo example– A time-delay demo system s I − A 1 − A 2 e − s � − 1 B � H ( s ) = C T         − 1 0 0 1 1 1 1 1  ,  ,  , 0 − 1 0 0 0 0 0 1 A 1 = A 2 = B = C = ,      0 0 − 1 0 0 0 0 0 Decay of singular values Let us construct, for σ i = [1 , 2 , 3 , 4 , 5 , 6] , Then, using DROP , we get the projection matrices 10 5 K ( σ 1 ) − 1 B K ( σ 6 ) − 1 B � Singular values � R = . . . , K ( σ 1 ) − T C T K ( σ 6 ) − T C T � � O = . . . . V = RX (: , 1) and W = OY (: , 1) . 10 − 10 The ˆ H obtained using V and W satisfies � nonreachable � rank ( R ) = 2 , rank ( O ) = 1 . nonobservable H ( s ) = ˆ 10 − 25 H ( s ) , ∀ s. O T R O T A 1 R O T A 2 R �� �� rank = 1 . (minimal 2 4 6 realization order) k Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 28/34

  74. Numerical Examples –Delay demo example– A time-delay demo system s I − A 1 − A 2 e − s � − 1 B � H ( s ) = C T         − 1 0 0 1 1 1 1 1  ,  ,  , A 1 = 0 − 1 0 A 2 = 0 0 0 B = 0 C = 1 ,      0 0 − 1 0 0 0 0 0 Construction of a minimal system � ˆ � H ( s ) − ˆ � H ( s ) � ( n = 3) H ( s ) � ( r = 1) H ( s ) � 10 1 10 − 15 10 0 10 − 1 10 − 17 10 − 2 10 − 1 10 0 10 1 10 − 2 10 − 1 10 0 10 1 10 2 Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 28/34

  75. Numerical Examples –Parametric demo example– A parametric demo dynamical system H ( s, p ) = C ( s I − A 1 − p A 2 ) − 1 B ,         − 2 0 0 0 1 0 1 1 C T =  ,  ,  ,  , A 1 = 0 − 1 0 A 2 = − 1 0 0 B = 0 1     0 0 − 2 1 0 0 1 0 Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 29/34

  76. Numerical Examples –Parametric demo example– A parametric demo dynamical system H ( s, p ) = C ( s I − A 1 − p A 2 ) − 1 B ,         − 2 0 0 0 1 0 1 1 C T =  ,  ,  ,  , A 1 = 0 − 1 0 A 2 = − 1 0 0 B = 0 1     0 0 − 2 1 0 0 1 0 For l = 20 points ( σ i , p i ) , let � K ( σ 1 , p 1 ) − 1 B K ( σ l , p l ) − 1 B � R = . . . , � K ( σ l , p l ) − T C T � K ( σ 1 , p 1 ) − T C T O = . . . . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 29/34

  77. Numerical Examples –Parametric demo example– A parametric demo dynamical system H ( s, p ) = C ( s I − A 1 − p A 2 ) − 1 B ,         − 2 0 0 0 1 0 1 1 C T =  ,  ,  ,  , A 1 = 0 − 1 0 A 2 = − 1 0 0 B = 0 1     0 0 − 2 1 0 0 1 0 For l = 20 points ( σ i , p i ) , let � K ( σ 1 , p 1 ) − 1 B K ( σ l , p l ) − 1 B � R = . . . , � K ( σ l , p l ) − T C T � K ( σ 1 , p 1 ) − T C T O = . . . . �� O T R O T A 1 R O T A 2 R �� rank = 2 . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 29/34

  78. Numerical Examples –Parametric demo example– A parametric demo dynamical system H ( s, p ) = C ( s I − A 1 − p A 2 ) − 1 B ,         − 2 0 0 0 1 0 1 1 C T =  ,  ,  ,  , A 1 = 0 − 1 0 A 2 = − 1 0 0 B = 0 1     0 0 − 2 1 0 0 1 0 Decay of Singular values For l = 20 points ( σ i , p i ) , let 10 5 � K ( σ 1 , p 1 ) − 1 B K ( σ l , p l ) − 1 B � R = . . . , � K ( σ l , p l ) − T C T � K ( σ 1 , p 1 ) − T C T O = . . . . 10 − 10 �� O T R O T A 1 R O T A 2 R �� rank = 2 . Compute projectors V and W and ˆ H ( s, p ) . 10 − 25 0 5 10 15 20 Then, H ( s, p ) = ˆ H ( s, p ) . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 29/34

  79. Numerical Examples –Parametric demo example– A parametric demo dynamical system H ( s, p ) = C ( s I − A 1 − p A 2 ) − 1 B ,         − 2 0 0 0 1 0 1 1 C T =  ,  ,  ,  , A 1 = 0 − 1 0 A 2 = − 1 0 0 B = 0 1     0 0 − 2 1 0 0 1 0 Absolute error For l = 20 points ( σ i , p i ) , let 10 − 14 � K ( σ 1 , p 1 ) − 1 B K ( σ l , p l ) − 1 B � R = . . . , � K ( σ l , p l ) − T C T � K ( σ 1 , p 1 ) − T C T O = . . . . 10 − 18 �� O T R O T A 1 R O T A 2 R �� rank = 2 . Compute projectors V and W and ˆ 10 − 22 H ( s, p ) . 10 − 3 10 − 2 10 − 1 10 0 10 1 10 2 Then, H ( s, p ) = ˆ H ( s, p ) . Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 29/34

  80. Numerical Examples –Time-delay example– Delay example [ Beattie/Gugercin ’09 ] E ˙ x ( t ) = Ax ( t ) + A τ x ( t − τ ) + Bu ( t ) , H ( s ) = C ( s E − A 1 − A τ e − sτ ) B y ( t ) = Cx ( t ) . Full order model n = 500 and τ = 1 . To employ the proposed methods, we consider 100 points on the imaginary axis. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 30/34

  81. Numerical Examples –Time-delay example– Delay example [ Beattie/Gugercin ’09 ] E ˙ x ( t ) = Ax ( t ) + A τ x ( t − τ ) + Bu ( t ) , H ( s ) = C ( s E − A 1 − A τ e − sτ ) B y ( t ) = Cx ( t ) . Full order model n = 500 and τ = 1 . To employ the proposed methods, we consider 100 points on the imaginary axis. Decay of singular values Balanced truncation [ Breiten ’16 ] DROP 10 0 10 − 7 10 − 14 10 − 20 12 25 50 75 100 Figure: Delay example: relative decay of the singular values using the proposed method and structured balanced Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 30/34 truncation.

  82. Numerical Examples –Time-delay example– Delay example [ Beattie/Gugercin ’09 ] E ˙ x ( t ) = Ax ( t ) + A τ x ( t − τ ) + Bu ( t ) , H ( s ) = C ( s E − A 1 − A τ e − sτ ) B y ( t ) = Cx ( t ) . Full order model n = 500 and τ = 1 . To employ the proposed methods, we consider 100 points on the imaginary axis. Reduced system of order r = 12 Ori. sys. DROP BT [ Breiten ’16 ] 100 10 − 2 10 − 2 10 − 7 10 − 4 10 − 12 10 − 2 10 − 1 100 101 102 103 104 10 − 2 10 − 1 100 101 102 103 104 freq ( s ) freq ( s ) Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 30/34

  83. Numerical Examples –Fractional derivative example– Fractional Maxwell equations. [ Feng/Benner ’08 ] � − 1 � s 2 I − 1 H ( s ) = s B T √ s D + A B , � � Full order model n = 29 , 295 . Frequency range is F := 4 e 9 , 8 e 9 Hz. To employ the proposed methods, we consider 50 points on the imaginary axis. Igor Pontes Duff, pontes@mpi-magdeburg.mpg.de Automatic Generation of Minimal and Reduced Models for Structured and Nonlinear Parametric Dynamical Systems 31/34

Recommend


More recommend