automated reasoning for the andrews curtis conjecture
play

Automated Reasoning for the Andrews-Curtis Conjecture Alexei Lisitsa - PowerPoint PPT Presentation

Automated Reasoning for the Andrews-Curtis Conjecture Alexei Lisitsa University of Liverpool AITP 2019, Obergurgl, 09.04.2019 Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis


  1. Automated Reasoning for the Andrews-Curtis Conjecture Alexei Lisitsa University of Liverpool AITP 2019, Obergurgl, 09.04.2019 Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 1 / 25

  2. Andrews-Curtis Conjecture. Preliminaries For a group presentation � x 1 , . . . , x n ; r 1 , . . . r m � with generators x i , and relators r j , consider the following transformations. AC1 Replace some r i by r − 1 . i AC2 Replace some r i by r i · r j , j � = i . AC3 Replace some r i by w · r i · w − 1 where w is any word in the generators. Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 2 / 25

  3. Andrews-Curtis Conjecture Two presentations g and g ′ are called Andrews-Curtis equivalent (AC-equivalent) if one of them can be obtained from the other by applying a finite sequence of transformations of the types (AC1) - (AC3). A group presentation g = � x 1 , . . . , x n ; r 1 , . . . r m � is called balanced if n = m , that is a number of generators is the same as a number of relators. Such n we call a dimension of g and denote by Dim ( g ) . Conjecture (1965) if � x 1 , . . . , x n ; r 1 , . . . r n � is a balanced presentation of the trivial group it is AC-equivalent to the trivial presentation � x 1 , . . . , x n ; x 1 , . . . x n � . Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 3 / 25

  4. Trivial Example � a , b | ab , b � → � a , b | ab , b − 1 � → � a , b | a , b − 1 � → � a , b | a , b � Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 4 / 25

  5. AC-conjecture: short profile AC-conjecture is open Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 5 / 25

  6. AC-conjecture: short profile AC-conjecture is open AC-conjecture may well be false (prevalent opinion of experts?) Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 5 / 25

  7. AC-conjecture: short profile AC-conjecture is open AC-conjecture may well be false (prevalent opinion of experts?) Series of potential counterexamples; smallest for which simplification is unknown is AK-3: � x , y | xyxy − 1 x − 1 y − 1 , x 3 y − 4 � Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 5 / 25

  8. AC-conjecture: short profile AC-conjecture is open AC-conjecture may well be false (prevalent opinion of experts?) Series of potential counterexamples; smallest for which simplification is unknown is AK-3: � x , y | xyxy − 1 x − 1 y − 1 , x 3 y − 4 � How to find simplifications, algorithmically? Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 5 / 25

  9. AC-conjecture: short profile AC-conjecture is open AC-conjecture may well be false (prevalent opinion of experts?) Series of potential counterexamples; smallest for which simplification is unknown is AK-3: � x , y | xyxy − 1 x − 1 y − 1 , x 3 y − 4 � How to find simplifications, algorithmically? If a simplification exists, it could be found by the exhaustive search/total enumeration (iterative deepening) The issue: simplifications could be very long (Bridson 2015; Lishak 2015) Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 5 / 25

  10. Search of trivializations and elimination of counterexamples Genetic search algorithms (Miasnikov 1999; Swan et al. 2012) Breadth-First search (Havas-Ramsay, 2003; McCaul-Bowman, 2006) Todd-Coxeter coset enumeration algorithm (Havas-Ramsay,2001) Generalized moves and strong equivalence relations (Panteleev-Ushakov, 2016) . . . Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 6 / 25

  11. Search of trivializations and elimination of counterexamples Genetic search algorithms (Miasnikov 1999; Swan et al. 2012) Breadth-First search (Havas-Ramsay, 2003; McCaul-Bowman, 2006) Todd-Coxeter coset enumeration algorithm (Havas-Ramsay,2001) Generalized moves and strong equivalence relations (Panteleev-Ushakov, 2016) . . . Our approach: apply generic automated reasoning instead of specialized algorithms Our Claim: generic automated reasoning is (very) competitive Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 6 / 25

  12. ACT rewriting system, dim =2 Equational theory of groups T G : ( x · y ) · z = x · ( y · z ) x · e = x e · x = x x · r ( x ) = e For each n ≥ 2 we formulate a term rewriting system modulo T G , which captures AC-transformations of presentations of dimension n . For an alphabet A = { a 1 , a 2 } a term rewriting system ACT 2 consists the following rules: R1L f ( x , y ) → f ( r ( x ) , y )) R1R f ( x , y ) → f ( x , r ( y )) R2L f ( x , y ) → f ( x · y , y ) R2R f ( x , y ) → f ( x , y · x ) R3L i f ( x , y ) → f (( a i · x ) · r ( a i ) , y ) for a i ∈ A , i = 1 , 2 R3R i f ( x , y ) → f ( x , ( a i · y ) · r ( a i )) for a i ∈ A , i = 1 , 2 Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 7 / 25

  13. AC-transformations as rewriting modulo group theory The rewrite relation → ACT / G for ACT modulo theory T G : t → ACT / G s iff there exist t ′ ∈ [ t ] G and s ′ ∈ [ s ] G such that t ′ → ACT s ′ . Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 8 / 25

  14. Reduced ACT 2 Reduced term rewriting system rACT 2 consists of the following rules: R1L f ( x , y ) → f ( r ( x ) , y )) R2L f ( x , y ) → f ( x · y , y ) R2R f ( x , y ) → f ( x , y · x ) R3L i f ( x , y ) → f (( a i · x ) · r ( a i ) , y ) for a i ∈ A , i = 1 , 2 Proposition Term rewriting systems ACT 2 and rACT 2 considered modulo T G are equivalent, that is → ∗ ACT 2 / G and → ∗ rACT 2 / G coincide. Proposition For ground t 1 and t 2 we have t 1 → ∗ ACT 2 / G t 2 ⇔ t 2 → ∗ ACT 2 / G t 1 , that is → ∗ ACT 2 / G is symmetric. Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 9 / 25

  15. Equational Translation Denote by E ACT 2 an equational theory T G ∪ rACT = where rACT = includes the following axioms (equality variants of the above rewriting rules): E-R1L f ( x , y ) = f ( r ( x ) , y )) E-R2L f ( x , y ) = f ( x · y , y ) E-R2R f ( x , y ) = f ( x , y · x ) E-R3L i f ( x , y ) = f (( a i · x ) · r ( a i ) , y ) for a i ∈ A , i = 1 , 2 Proposition For ground terms t 1 and t 2 t 1 → ∗ ACT 2 / G t 2 iff E ACT 2 ⊢ t 1 = t 2 A variant of the equational translation: replace the axioms E − R3L i by “non-ground" axiom E − RLZ : f ( x , y ) = f (( z · x ) · r ( z ) , y ) Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 10 / 25

  16. Implicational Translation Denote by I ACT 2 the first-order theory T G ∪ rACT → where rACT → 2 2 includes the following axioms: I-R1L R ( f ( x , y )) → R ( f ( r ( x ) , y ))) I-R2L R ( f ( x , y )) → R ( f ( x · y , y )) I-R2R R ( f ( x , y )) → R ( f ( x , y · x )) I-R3L i R ( f ( x , y )) → R ( f (( a i · x ) · r ( a i ) , y )) for a i ∈ A , i = 1 , 2 Proposition For ground terms t 1 and t 2 t 1 → ∗ ACT 2 / G t 2 iff I ACT 2 ⊢ R ( t 1 ) → R ( t 2 ) Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 11 / 25

  17. Higher Dimensions An equational translation for n = 3 (“non-ground” variant): f ( x , y , z ) = f ( r ( x ) , y , z ) f ( x , y , z ) = f ( x , r ( y ) , z ) f ( x , y , z ) = f ( x , y , r ( z )) f ( x , y , z ) = f ( x · y , y , z ) f ( x , y , z ) = f ( x · z , y , z ) f ( x , y , z ) = f ( x , y · x , z ) f ( x , y , z ) = f ( x , y · z , z ) f ( x , y , z ) = f ( x , y , z · x ) f ( x , y , z ) = f ( x , y , z · y ) f ( x , y , z ) = f (( v · x ) · r ( v ) , y , z ) f ( x , y , z ) = f ( x , ( v · y ) · r ( v ) , z ) f ( x , y , z ) = f ( x , y , ( v · z ) · r ( v )) . Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 12 / 25

  18. Automated Reasoning for AC conjecture exploration For any pair of presentations p 1 and p 2 , to establish whether they are AC-equivalent one can formulate and try to solve first-order theorem proving problems E ACT n ⊢ t p 1 = t p 2 , or I ACT n ⊢ R ( t p 1 ) → R ( t p 2 ) OR, theorem disproving problems E ACT n �⊢ t p 1 = t p 2 , or I ACT n �⊢ R ( t p 1 ) → R ( t p 2 ) Alexei Lisitsa ( University of Liverpool AITP 2019, Obergurgl, 09.04.2019) Automated Reasoning for the Andrews-Curtis Conjecture 13 / 25

Recommend


More recommend