asacusa 2009 2010
play

ASACUSA 2009 - 2010 Atomic Spectroscopy And Collisions Using Slow - PowerPoint PPT Presentation

ASACUSA 2009 - 2010 Atomic Spectroscopy And Collisions Using Slow Antiprotons Jan 19, 2010 Ryugo S. Hayano, University of Tokyo Spokesperson, ASACUSA ASACUSA 7-Oct-97 CERN/SPSC 97-19 CERN/SPSC P-307 p He & H spectroscopy CPT,


  1. ASACUSA 2009 - 2010 Atomic Spectroscopy And Collisions Using Slow Antiprotons Jan 19, 2010 Ryugo S. Hayano, University of Tokyo Spokesperson, ASACUSA ASACUSA

  2. 7-Oct-97 CERN/SPSC 97-19 CERN/SPSC P-307 p ̅ He & H ̅ spectroscopy → CPT, fundamental const. p ̅ -atom, p ̅ -nucleus cross sections <100 eV ATOMIC SPECTROSCOPY AND COLLISIONS USING SLOW ANTIPROTONS 50 keV p ̅ s (RFQD) ASACUSA Collaboration 100 eV p ̅ s (“MUSASHI” trap) ASACUSA

  3. Collaboration D. Barna 1 , 6 , M. Charlton 2 , M. Corradini 3 , A. Dax 1 , Y. Enomoto 5 , S. Federmann 8 , S. Friedreich 8 , R.S. Hayano 1 , H. Higaki 5 , M. Hori 1 , 11 , D. Horv´ ath 6 , C.A. Hunniford 9 , B. Juh´ asz 8 , Y. Kanai 5 , C. Kim 4 , H. Knudsen 7 , H-P. Kristiansen 7 , T. Kobayashi 1 , N. Kuroda 4 , M. Leali 3 , E. Lodi-Rizzini 3 , M. Lund 7 , V. Mascagna 3 , O. Massiczek 8 , Y. Matsuda 4 , R.W. McCullough 9 , K. Michishio 5 , S.P. Møller 7 , T. Pask 8 , W. Pirkl 1 , er 11 , K. Todoroki 1 , K. T˝ esi 10 , H.D. Thomsen 7 , H.A. Torii 4 , U. Uggerhøj 7 , L. Venturelli 3 , A. S´ ot´ ok´ E. Widmann 8 , Y. Yamazaki 5 , P. Zal´ an 6 , J. Zmeskal 8 , N. Zurlo 3 1. The University of Tokyo (JP), 2. University of Swansea (GB), 3. Universit` a di Brescia and INFN (IT), 4. The University of Tokyo, Komaba (JP), 5. RIKEN (JP), 6. KFKI (HU), 7. University of Aarhus (DK), 8. Stefan Meyer Institute (AT), 9. The Queen’s University of Belfast (UK), 10. ATOMKI (HU), 11 Max-Planck-Institut f¨ ur Quantenoptik (DE) ASACUSA 3

  4. 2009 beamtime AD Schedule 2009 (Version 1.0, May 4, 2009) Wk Mon Tue Wed Thu Fri Sat Sun 20 May 11 - May 17 21 May 18 - May 24 22 AD Setting Up May 25 - May 31 23 Jun 1 - Jun 7 … time 07-15 15-23 23-07 07-17 17-01 01-11 11-21 21-07 24 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 Jun 8 - Jun 14 pbarHe antiprotonic helium 25 AD2 AD5 A D 3 AD2 AD5 AD3 AD2 A D 5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 Jun 15 - Jun 21 26 AD3 AD D2 AD5 AD3 A D 2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 A D 2 AD5 AD3 AD2 AD5 AD3 AD2 Jun 22 - Jun 28 laser spectroscopy 27 A D 5 A D 3 A D 2 A D 5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 A D 5 A D 3 AD2 AD5 AD3 Jun 29 - Jul 5 28 AD2 AD D5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 Jul 6 - Jul 12 29 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 Jul 13 - Jul 19 30 A D 5 A D 3 A D 2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 A D 3 A D 2 AD5 AD3 AD2 AD5 AD3 Jul 20 - Jul 26 31 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 Jul 27 - Aug 2 32 AD3 AD D2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 Aug 3 - Aug 9 33 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 A D 5 A D 3 A D 2 A D 5 A D 3 A D 2 AD5 AD3 AD2 AD5 A D 3 Aug 10 - Aug 16 MUSASHI 34 A D 2 A D 5 A D 3 A D 2 A D 5 A D 3 AD2 AD5 AD3 AD2 A D 5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 Aug 17 - Aug 23 antihydrogen formation 35 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 Aug 24 - Aug 30 36 AD D3 Aug 31 - Sep 6 AD5 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 in the cusp trap 37 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 Sep 7 - Sep 13 38 AD4 ep 20 39 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 ep 27 40 AD5 AD D3 AD2 AD5 AD3 AD2 A D 5 AD3 AD2 AD5 AD3 AD2 A D 5 A D 3 A D 2 AD5 AD3 AD2 AD5 AD3 Sep 28 - Oct 4 p ̅ A annihilation cross sect. 41 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 5 - Oct 11 pbar ann. 42 AD3 AD D2 A D 5 A D 3 A D 2 A D 5 A D 3 A D 2 A D 5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 A D 2 18 43 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 A D 2 AD5 AD3 AD2 A D 5 A D 3 25 antiprotonic helium-3 44 AD2 AD D5 A D 3 A D 2 A D 5 A D 3 AD2 AD5 AD3 AD2 AD5 A D 3 A D 2 A D 5 A D 3 AD2 AD5 AD3 AD2 AD5 26 - Nov 1 MW 45 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 v 8 microwave spectroscopy 46 v 15 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 47 v 22 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 AD2 AD5 AD3 48 AD Physics Stop Nov 23, 8:00 v 29 2-week extension 49 LHC run v 30 - Dec 6 antihydrogen formation 50 Dec 7 - Dec 13 51 Dec 14 - Dec 20 in the cusp trap AD MD (8:00-20:00) Injector MD (8:00-8:00) or PS MD (8:00-16:00) AD2 (ATRAP) AD3 (ASACUSA) AD4 (ACE) AD5 (ALPHA) Status Accelerator Schedule V3.3 01/03/2009 ASACUSA 4

  5. 1. Antiprotonic Helium - CPT & fundamental const. -

  6. 1.1 introduction

  7. Laser spectroscopy of p ̅ He <$)*+1+2&61)$%&.$1' ! ,-.*/0& 1+2(3%*2*+(4 "# &5$6("'&(*+ !++(5(612(*+ 1+/& /$2$42(*+ !"#$%& $'())(*+ !2*'(4&4132"%$& # (+2*&'$21)21.6$& )212$)7& !66&25()&5133$+)&=(25(+&>&'(4%*)$4*+/7 85$%'16(912(*+& ?(#5&@AB-)416$C&61)$%&3*=$%)&1%$&+$$/$/& 2*&:&; 2*&$D4(2$&25$&1+2(3%*2*+7 ASACUSA 7

  8. (n,L)=(39,35) → (38,34) in p ̅ 4 He Non-relativistic energies • 501,972,347.9 MHz Relativistic correction for e - -27,526.1 MHz e - anomalous magnetic moment 233.3 MHz One-loop transverse photon self-energy • 3818.1 MHz One-loop vacuum polarization • -122.5 MHz Relativistic correction for helium/antiproton • 37.3 MHz -34.7 MHz One transverse photon exchange order α 2 • 0.8 MHz One transverse photon exchange order α 3 • Two-loop QED corrections • 0.9 MHz Finite size of nucleus • 2.4 MHz -2.6 MHz α 4 corrections • α 5 ln α corrections • < 1.3 MHz Transition energy 501 948 754.9 (1.3)(0.5) MHz Experiment (PRL 2006) 501 948 752 (4) MHz ASACUSA 8

  9. http://physics.nist.gov/ 1836.15267247(80) CODATA 2006 m e /m p Electron-to-(anti)proton mass ratios 2 0 1200 2 z 0 n 5 i z 9 a 6 n M 0 0.0005485799XXXX e i 1100 a t A / a M S I t S s U / G n I C S o 1000 A G t g S n A i h s 900 a W 800 ASACUSA 9

  10. � � � � � � � � Status as of 2006 M. Hori et al., PRL 96, 243401 (2006) " ! "# $ ! %!&'()* � %(+'(!* 673 nm !"#$%&'()*+(&"$,&* %(+'()* � %(,'(!* 597 nm %(-'()* � %(,'(!* 726 nm -.*/0*,+12&%,%-2& %(-'(!* � %(.'((* 470 nm %(.'(!* � %()'((* 417 nm %()'((* � %(!'(/* 372 nm %(/'(0* � %(0'(&* 8-+*9*,+12&%,%-2& 264 nm 7)& & )& %2*:#1+;'($%"<=> � � � 11111111%223* 45 #62 #62 (?:(+%<(2,*%& " ( "# $ ! For 4 transitions in %(,'(!* � %(-'((* 593 nm p ̅ 3 He %(.'(!* � %(-'((* 723 nm %(.'((* � %()'(/* ν exp larger than ν th 463 nm %(!'(/* � %(('(0* 364 nm by 20-40 ppb %(/'(0* � %(0'(&* 287 nm 7)& & )& � � � 11111111%223* 45 #62 #62 ASACUSA 10

  11. CODATA 2006 P . J. Mohr, B. N. Taylor, D. B. Newell, Rev. Mod. Phys. 80, 633 (2008). ASACUSA 11

  12. ASACUSA’s efforts 2006 - 2009 1&2$3#'"# ! +3#"4'#'5$#&$6("+#%"&#'5$#$78$&29$+': '5$"&;#32%%$&$+<$#2+#6+'28&"'"+2<#5$=249:>? @78$&29$+'#A("9$#(;('$96'2<#$&&"&BC 15$"&;#A52D5$&:"&3$&#E@F#"&#(82+#$%%$<'BC Improved the p ̅ He formation target Increased the spectral resolution of laser by x 100 ASACUSA 12

  13. 1.2 improvements

  14. OId p ̅ He production target p ̅ He formation C'(2*#%,"#-"8",%'":#78#%#+%,-"#<./0#12?#&(+)2"> in ~10cm 3 C'(2*#%,"#6(,2":#$","B laser beam p ̅ /0#12 Initial and reflected (from window, flange, etc.) laser lights !"#$%&"#'(#)*"#%#+%,-"#.#/0#12#+%*",#3"%24 have different Doppler shifts. 5%,'#(6#'$"#+%*",#+7-$'#1%8#," ! "1'#(66#'$"#978:(9#%8:#7,,%:7%'"#%#:766","8'# &"+(17';#1+%**#(6#%'(2*#<:"6(,2%'7(8#(6#*="1',%>?4 This can distort spectra! ASACUSA 14

Recommend


More recommend