artificial motion data for navigation sensors of a
play

Artificial motion data for navigation sensors of a submarine running - PowerPoint PPT Presentation

Artificial motion data for navigation sensors of a submarine running in periscope depth below wave surface 2018.06.28. Hyeon Kyu Yoon, Young-Ho Park, Juwon Seo (CWNU) Youngbum Park, Chanju Park (ADD) Artificial motion data of submarine in wave


  1. Artificial motion data for navigation sensors of a submarine running in periscope depth below wave surface 2018.06.28. Hyeon Kyu Yoon, Young-Ho Park, Juwon Seo (CWNU) Youngbum Park, Chanju Park (ADD) Artificial motion data of submarine in wave

  2.  Introduction  Equations of motion  Navigation data  Simulation  Conclusion 2 Artificial motion data of submarine in wave

  3. Introduction  Background  Submarine navigation  GPS cannot be used.  IMU: Dead reckoning  Secondary navigational sensor: DVL, EM-Log, Depth gauge, etc.  Development of navigation algorithm  Artificial data of navigation is necessary.  Especially the data during alignment near wave surface  Simulation program  6 DOF submarine motion for maneuvering  Additional seakeeping motion during running or hovering near wave surface 3 Artificial motion data of submarine in wave

  4. Equations of motion  Coordinate systems  Earth-centered Earth-fixed: Reference and position  NED: Position and Euler angle  Body-fixed: Describe 6 DOF equations of motion M,q X,u    O Reference b U  Z,w s  r N,r U O  Reference  X,u Y,v  State variables  Velocity and Displacement  Linear and angular velocities  Latitude, longitude, height, and Euler angles 4 Artificial motion data of submarine in wave

  5. Equations of motion  6 DOF equations of motion                         b b b b b b b b m v v r r f f f f f f f     nb nb G nb nb G  HD HS G P W C                        b b b b b b b I I mr v v m m m m m m m  nb nb nb G nb HD HS G P W C  External force  HD, HS, G: Hydrodynamic, hydrostatic, and gravity  P,  : Propeller and control plane  W, C: Wave and current  Kinematic relations     n b b n n v C v , D b b nb v v       N E , , h v      D R h R h cos m t 5 Artificial motion data of submarine in wave

  6. External force  Hydrodynamic force  Feldman model (1979, NSRDC)            2 2 2 2 X X u X u X vr X wq X rp X v X w X q X r HD u vr wq rp vv ww qq rr          2 2 Z Z w Z q Z Z w Z q Z vp Z w Z w v w HD w q 0 w q vp w ww                      x   2 2 1 C b x w x w x v x dx LC v x v t x dx D L FW 2 l 2 x 2            2 2 2 2 M M w M q M M w M q M rp M w M w v w M w v w HD w q 0 w q rp w ww w w                   x      2 2 1 C xb x w x w x v x dx LC xv x v t x dx D L FW 2 l 2 x 2  Propeller and control force       2 2 2 X X X X          r s b   r r s s b b 2 4 X n D K J   1 P P T P           Z Z Z Z C          s b s   2 5 C K n D K J s b s P P Q P   1           M M M M C      s b s   C s b s 6 Artificial motion data of submarine in wave

  7. External force  Hydrostatic and gravitational force        X X W B sin HS G        Z Z W B cos cos HS G              M M z W z B sin x W x B cos cos HS G G B G B  Wave effect  Superpose wave induced acceleration to maneuvering one  Smooth change of motion value  Acceleration considered  Response amplitude operator and ITTC wave spectrum N                   2 u RAO cos k X cos Y sin t   W i x i i i x i i  i 1 N                   2 w RAO cos k X cos Y sin t   W i z i i i z i i  1 i N                   2 q RAO k cos k X cos Y sin t     W i i i i i i i  i 1 7 Artificial motion data of submarine in wave

  8. Hydrodynamic coefficient  Numerical PMM test Rotating arm test Drift test 8 Artificial motion data of submarine in wave

  9. Hydrodynamic coefficient  Horizontal plane Turning Static drift Static rudder 9 Artificial motion data of submarine in wave

  10. Wave effect  RAO (Response Amplitude Operator)  ANSYS AQWA (3D panel method based on potential theory)  Pre-calculation and interpolation for speed and heading  Speed: 2~20 knots, 2 knots interval  Wave heading: 0~180 degrees, 45 degrees interval  Wave frequency: 0.2~3.0 rad/s  Long-crested irregular wave  Wave  Long-crested irregular wave  Superpose various regular waves  ITTC wave spectrum  Wave height  Random phase 10 Artificial motion data of submarine in wave

  11. Wave effect  RAO  Stationary case 1.0 1.0 1.0 0.8 0.8 0.8 0.6 0.6 0.6 X/A Y/A Z/A 0.4 0.4 0.4 Head sea Head sea Head sea Bow quatering sea Bow quatering sea Bow quatering sea Beam sea Beam sea Beam sea 0.2 0.2 0.2 Stern quatering sea Stern quatering sea Stern quatering sea Following sea Following sea Following sea 0.0 0.0 0.0 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20  L  L  L Surge Sway Heave 8.0 1.2 0.6 Head sea Bow quatering sea Beam sea 6.0 Stern quatering sea Head sea Following sea 0.8 0.4 Bow quatering sea Beam sea Stern quatering sea  /kA  /kA  /kA Following sea 4.0 0.2 0.4 Head sea Bow quatering sea 2.0 Beam sea Stern quatering sea Following sea 0.0 0.0 0.0 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20  L  L  L Pitch Roll Yaw 11 Artificial motion data of submarine in wave

  12. Wave effect  RAO (Beam sea)  Speed change 12 Artificial motion data of submarine in wave

  13. Wave effect  RAO (Bow quartering sea)  Depth change  modeling using Exp(-kz) 13 Artificial motion data of submarine in wave

  14. Navigational data  Data stored in navigation sensors  Measured or calculated values  Earth’s rotation and curved surface effect included Sensor Item Unit Reference Position(  ,  , h) rad, m Earth-fixed Velocity( ) , , m/s Earth-fixed v v v N E D Attitude(  ,  ,  ) INS rad Earth and Body-fixed    Angular rate( ) rad/s Body-fixed , , x y z m/s 2 Acceleration( ) Body-fixed a a a , , x y z DVL Velocity( ) m/s Body-fixed u v w , , r r r DM-Log Forward speed(V) m/s Body-fixed Depth gauge Depth(-h) m Earth-fixed 14 Artificial motion data of submarine in wave

  15. Navigational data  IMU (Gyro and accelerometer)  Earth’s rotation and curved surface effect (Transport rate) T                 b b b n n n n , where,   C ib x y z nb n in in ie en   T             b b n n n n n a  a a a  C v 2 v g   x y z n ie en         T n cos 0 sin ie ER ER T    v tan v v     n   E N E    en   R h R h R h t m t  Sensor position                 b b b b b b b b b v v v r r s s s nb nb nb nb    Noise effect        z 1 x SF bias noise 15 Artificial motion data of submarine in wave

  16. Simulation  Computer program  Visual Studio 2010 MFC based dialog program  Main class: Submarine  Subclass: Hull, Propeller, ControlPlane, Operator, Sensor, Wave SubSimDlg (VS 2010, MFC based) Submarine class ControlPlane class Propeller class Hull class Operator class Wave class Sensor class ReadData ReadData ReadData ReadData ReadData ReadData ReadData Submarine.inp ControlPlane.inp Propeller.inp Hull.inp Operator.inp WaveRAO.inp Sensor.inp Initialize Initialize Initialize Initialize Initialize Initialize Initialize InertiaMatrix Spectrum TimeUpdate FinDynamics PropDynamics CommandRps UpdateSensorData Kinematics AutoPilotSpeed INSData DVLData EMLogData Force Force Force CommandControl AccDueToWave DepthGaugeData ForceInertia AutoPilotDepth ForceHDynamic AutoPilotPitch PrintData ForceHStatic AutoPilotHeading ForceGravity Finalize Finalize Finalize Finalize Finalize Finalize Finalize 16 Artificial motion data of submarine in wave

  17. Simulation  Sample submarine  Thune, S., “Simulation of Submarine Manoeuvring ”, Master thesis, Royal Institute of Technology, Sweden, 2015 17 Artificial motion data of submarine in wave

Recommend


More recommend