arch 2014 1 proceedings
play

ARCH 2014.1 Proceedings July 31-August 3, 2013 Option Pricing - PDF document

Article from: ARCH 2014.1 Proceedings July 31-August 3, 2013 Option Pricing Without Tears: Valuing Equity-Linked Death Benefits Elias S. W. Shiu Department of Statistics & Actuarial Science The University of Iowa U.S.A. Joint work with


  1. Article from: ARCH 2014.1 Proceedings July 31-August 3, 2013

  2. Option Pricing Without Tears: Valuing Equity-Linked Death Benefits Elias S. W. Shiu Department of Statistics & Actuarial Science The University of Iowa U.S.A. Joint work with Hans U. Gerber & Hailiang Yang

  3. Let T x denote the time-until-death random variable for a life aged x. Let S(t) be the time-t price of a stock or mutual fund. Consider death benefits that depend on the value of S(T x ), i.e., consider b(S(T x )) for some function b(.). Examples: b(s) = Max(s, K) b(s) = (s – K) + Problem : Evaluate −δ T E[e b(S(T ))] x x where the expectation is taken with respect to an appropriate probability distribution and δ is a continuously compounded interest rate.

  4. −δ T E[e b(S(T ))] x x −δ = T | E[ E[ e b(S(T )) T ] ] x x x ∞ = ∫ −δ t | E[ e b(S(t)) T =t f ] (t) dt x T x 0 ∞ = ∫ −δ t E[ e b(S(t)) ] f (t ) dt T x 0 if T x is independent of {S(t)}.

  5. So we want to calculate ∞ ∫ −δ t E[e b(S(t))]f (t)dt. T x 0 = ∑ If f (t) c f (t) , τ T j x j j then ∞ ∫ −δ t E[e b(S(t))]f (t)dt T x 0 ∞ ∑ ∫ −δ t = c E[e b(S(t))]f (t)dt τ j j j 0 ∑ − τ δ τ j = c E[e b (S( ) ]. ) j j j

  6. The time-until-death density function can be approximated by linear combinations of exponential density functions ∑ ∑ −λ t ≈ × × λ j f (t) c f (t) = c e . τ T j j j x j j j Thus, our valuation problem becomes finding E[e −δτ b(S( τ ))], where τ is an exponential random variable independent of {S(t)}. It turns out to be an elementary calculus exercise for geometric Brownian motion {S(t)}.

  7. Let S(t) = S(0)e µ t + σ Z(t) , t ≥ 0 , where {Z(t)} is a standard Brownian motion. Let τ be an independent exponential random variable with mean 1/ λ . Then, E[e −δτ b(S( τ ), Max{S(t); 0 ≤ t ≤ τ })]   ∞ λ m 2 ∫ ∫ −α − β−α = x m x ( )m   b S(0)e ( , S(0)e ) e d x e dm σ 2   −∞ 0 where α < 0 and β > 0 are the solutions of ½ σ 2 x 2 + µ x − (λ + δ ) = 0.

  8. E[e −δτ b(S( τ ), Max{S(t); 0 ≤ t ≤ τ })]   ∞ λ m 2 ∫ ∫ −α − β−α = x m x ( )m   b S(0)e ( , S(0)e ) e d x e d m. σ 2   −∞ 0 Examples: b(s, u) = (s – K) + call option b(s, u) = (K – s) + put option b(s, u) = u high water mark payoff

  9. Barrier Options Assume S(0) < B, a barrier. b(s, u) = I(u < B)× π (s) Up-and-out option b(s, u) = I(u ≥ B)× π (s) Up-and-in option Useful for incorporating lapses or surrenders.

  10. Assume S(t) = S(0)e X(t) , t ≥ 0, where N (t) N (t) ν ω ∑ ∑ = µ + σ + − X(t) t Z(t) J K j k = = j 1 k 1 m ∑ − = v x > f (x) A v e , x 0 i J i i = i 1 n ∑ − = > w x f (x) B w e , x 0 i K i i = i 1 m n ∑ ∑ = = A 1, B 1 i i = = i 1 i 1

  11. S(t) = S(0)e X(t) , t ≥ 0 Running maximum M(t) := Max{X(u); 0 ≤ u ≤ t } Running minimum m(t) := Min{X(u); 0 ≤ u ≤ t } Because {X(u)} is a Levy process, (i) M( τ ) and [X( τ) − M (τ )] are independent random variables, (ii) [X( τ) − Μ(τ )] has the same distribution as m( τ ). (i) is hard to prove; (ii) is easy.

  12. In fact, (ii) is true for each fixed t. X(t) – M(t) = X(t) – Max{X(s ); 0 ≤ s ≤ t} = X(t) + Min{ − X(s); 0 ≤ s ≤ t} = Min{X(t) − X(s); 0 ≤ s ≤ t} = Min{X(t − s); 0 ≤ s ≤ t} in distribution = Min{X(s ); 0 ≤ s ≤ t} = m(t)

  13. Running maximum M(t) := Max{X(u); 0 ≤ u ≤ t} Running minimum m(t) := Min{X(u); 0 ≤ u ≤ t} (i) M( τ ) and [X( τ) − M (τ )] are independent r.v.’s. (ii) [X( τ) − M (τ )] and m( τ ) have the same distribution. Then, E[e zX( τ ) ] = E[e z[X( τ ) −Μ(τ)+ M( τ )] ] = E[e z[X( τ ) − M( τ )] ] × E[e zM( τ ) ] = E[e zm( τ ) ] × E[e zM( τ ) ], which is a version of Wiener-Hopf factorization.

  14. Assume N (t) N (t) ν ω ∑ ∑ = µ + σ + − X(t) t Z(t) J K j k = = j 1 k 1 where m ∑ − = > v x f (x) A v e , x 0 i J i i = i 1 n ∑ − = > w x f (x) B w e , x 0 i K i i = i 1 Then, E[e zX(t) ] = e t Ψ (z) for each t ≥ 0 , with m n z z ∑ ∑ Ψ = µ + σ + ν − ω 2 2 (z) z ½ z A B i i − + v z w z = = i i i 1 i 1

  15. m n z z ∑ ∑ Ψ = µ + σ + ν − ω 2 2 (z) z ½ z A B i i − + v z w z = = i i i 1 i 1 can be extended by analytic continuation . The moment-generating function of X( τ ) is E[e zX( τ ) ] = E[E[e zX( τ ) | τ ]] = E[e Ψ (z) τ ] λ = λ − Ψ . (z) The zeros of the RHS are the poles of Ψ (z). The poles of the RHS are the zeros of λ − Ψ (z).

  16. Label the parameters (the poles of Ψ (z)) such that v 1 < v 2 < … < v m w 1 < w 2 < … < w n If the weights A’s and B’s are positive, then − ∞< α n+1 < − w n <...<− w 1 <α 1 <0< β 1 < v 1 <...< v m <β m+1 < ∞

  17. Label the parameters (the poles of Ψ (z)) such that v 1 < v 2 < … < v m w 1 < w 2 < … < w n If the weights A’s and B’s are positive, then − ∞< α n+1 < − w n <...<− w 1 <α 1 <0< β 1 < v 1 <...< v m <β m+1 < ∞ E[e zX( τ ) ] = E[e zm( τ ) ] ×E[e zM( τ ) ]. Wiener-Hopf: For z > 0, 0 < E[e zm( τ ) ] ≤ 1. No positive zeros or poles. For z < 0, 0 < E[e zM( τ ) ] ≤ 1. No negative zeros or poles.

  18. − ∞< α n+1 < − w n <...<− w 1 <α 1 <0< β 1 < v 1 <...< v m <β m+1 < ∞    + n n 1 1 ∏ ∏ τ ∝  +   zm( ) E[e ] (z w )    j − α z     = = j j 1 j 1    + m m 1 1 ∏ ∏ τ ∝ − zM( )    E[e ] (z v )    j − β z    = = j j 1 j 1    + − α + n n 1 z w ∏ ∏ τ j j =    zm( ) E[e ]    − α w z    = = j j j 1 j 1    − β + m m 1 v z ∏ ∏ τ j j =  zM( )   E[e ]    β − v z    = = j j j 1 j 1

  19. τ z M( ) E[e ]    − β + m m 1 v z ∏ ∏ j j =       β − v z    = = j j j 1 j 1    −β β + + β m m 1 m 1 v ∑ ∏ ∏ j k j =    k .    β −β β − v z    = = = ≠ j j k k k 1 j 1 j 1,j k + m 1 ∑ −β x = > Thus, f ( ) x b e , x 0, k τ M( ) k = k 1    + −β β m m 1 v ∏ ∏ j k j    = β where b k k    β −β v    = = ≠ j j k j 1 j 1,j k

  20. τ z m( ) E[e ]    + −α + n n 1 z w ∏ ∏ j j =       − α w z    = = j j j 1 j 1    α + −α + + −α n 1 n n 1 w ∑ ∏ ∏ k j j =    k    α − α − α w z    = = = ≠ j k j k k 1 j 1 j 1 , j k + n 1 ∑ −α = x < Thus, f ( ) x a e , x 0, k τ m( ) k = k 1    α + −α + n n 1 w ∏ ∏ k j j = −α    where a ( )    k k α − α w    = = ≠ j k j j 1 j 1, j k

  21. For y ≥ max(x, 0), f X( τ), M (τ ) (x, y) = f M( τ), X (τ)−Μ(τ ) (y, x − y) × 1 = f M( τ) (y) f X (τ)−Μ(τ ) (x − y) = f M( τ) (y) f m (τ ) (x − y)    +  + m 1 n 1 ∑ ∑ −α − −β (x y) = y     j b e a e k  k j    = = k 1 j 1 + + m 1n 1 ∑∑ −α − β −α x ( )y = × j k j a b e e j k = = k 1 j 1

  22. Further Work 1. Use SOA CAE research grant to hire graduate students to estimate the parameters and to program the formulas. 2. Binomial tree version.

  23. References Asmussen, S., Avram, F., Pistorius, M.R., 2004. Russian and American put options under exponential phase-type Lévy models. Stochastic Processes and Their Applications 109, 79-111. Bowers, N., Gerber, H.U., Hickman, J., Jones, D., Nesbitt, C., 1997. Actuarial Mathematics, 2nd ed., Schaumburg, IL: Society of Actuaries. Cai, N., Kou, S.G., 2011. Option pricing under a mixed-exponential jump diffusion model. Management Science, 57, 2067-2081. Dufresne, D., 2007. Fitting combinations of exponentials to probability distributions. Applied Stochastic Models in Business and Industry 23, 23-48. Dufresne, D., 2007. Stochastic life annuities. North American Actuarial Journal 11 (1), 136-157.

Recommend


More recommend