arben merko i icrea amp institut catal de nanotecnologia
play

Arben Merkoi ICREA & Institut Catal de Nanotecnologia - PowerPoint PPT Presentation

www.nanobiosensors.org Arben Merkoi ICREA & Institut Catal de Nanotecnologia Bellaterra, Catalonia, Spain arben.merkoci@icn.cat 2 nd JAPANESE- SPANISH BILATERAL SYMPOSIUM NANOTECHNOLOGIES AND NEW MATERIALS FOR ENVIRONMENTAL


  1. www.nanobiosensors.org Arben Merkoçi ICREA & Institut Català de Nanotecnologia Bellaterra, Catalonia, Spain arben.merkoci@icn.cat 2 nd JAPANESE- SPANISH BILATERAL SYMPOSIUM “NANOTECHNOLOGIES AND NEW MATERIALS FOR ENVIRONMENTAL CHALLENGES” (SJ-NANO 2013) TSUKUBA (JAPAN), 2013, MARCH 5th

  2. INDEX  Introduction – Our motivation and detection systems  Lab-on-a-chip systems: Detection of pesticides and phenols  Lateral flow / nanomotors based biosensing platforms  Future perspectives & conclusions

  3. INDEX  Introduction – Our motivation and detection systems  Lab-on-a-chip systems: Detection of pesticides and phenols  Lateral flow / nanomotors based biosensing platforms  Future perspectives & conclusions

  4. N A N D Diagnostics O Environmental E monitoring M V A NANOBIOELECTRONICS & I BIOSENSORS ‘s research aims to T C integrate nanotechnology methods, Other tools and materials into low cost, user E industrial E friendly and efficient (bio)sensors applications R with interest for diagnostics , safety S /security and other fields I Food A quality Safety / L security S

  5. State of the art nanobiosensing technologies www.nanobiosensors.org ACS Nano, 2012, DOI: 10.1021/nn301368z Chemical Reviews, 111 (5), 3433-3458, 2011. Chemical Reviews, 2012, 112, 5317 – 5338 E.Morales, A.Merkoçi, Graphene oxide as an optical biosensing platform”, Advanced Materials,. 2012, 24, 3298 – 3308

  6. Nanomaterials based electrochemical detection tools 2013 Increase the sensitivity and simplicity IV. Indirect detection through nanochannels blocking Ag + Ag + III. Electrocatalytic detections 2H + H 2 Ag Au (silver enhancement, hydrogen evolution) Au II. Direct /onto-electrode detection I. Detection after previous dissolving 2003

  7. NANOPARTICLES & ELECTROCHEMICAL STRIPPING Chemical dissolving followed by Multicoding technology stripping analysis Breast cancer DNA related TRAC 24 341-349 (2005) JACS, 125 3214-3215 (2003) ACA 482 149 – 155 (2003)

  8. Protein detection- direct detection of AuNP Au- α -human-HRP Human IgG α -human IgG-biotin Streptavidin-MB 7 7 DPV of AuNPs 6 6 Optical anti-Human-HRP-Au Optical anti-Human-HRP 5 5 Peak current (  A) Abs (492 nm) 4 4 3 3 2 2 1 1 0 0 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e+0 1e+1 Human IgG (  g/ml) L.O.D: 52 and 260 pg of human IgG/mL for HRP and electrochemical Analytical Chemistry, 2007, 79, 5232-5240 AuNP-based detections Analytical Chemistry, 2010, 82, 1151 – 1156

  9. Indirect gold nanoparticles detection Catalytic effect of AuNPs towards Ag deposition Au Au Ag + Ag + Au Au Ag + Au Au Detection of human IgG L.O.D. : 23 fg mL -1 Biosens. Bioelectron, 2009, 24, 2475 (8pp) Catalytic effect of AuNPs towards H 2 evolution Detection of a -HepB in human serum L.O.D. : 3 mUI mL -1 Biosens. Bioelectron., 2010, 26, 1710(4pp) Electrochem. Commun. , 2010, 12, 1501(3pp)

  10. Salmonella detection based on diferential voltammetry of AuNP Schematic (not in scale) of Salmonella detection DPV using AuNPs electrochemical detection -1.8 -1.8 7 A B A 6 B 5 4 -1.2 -1.2 3 I/  A I  A 2 1 -0.6 -0.6 1  m 1  m 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 10 10 Log [ Salmonella ] / CFU mL-1 -1 E/V vs AgCl Log Biosensors and Bioelectronics 40 (2013) 121 – 126.

  11. Protein detection - AuNP & nanochannels Nanochannels immunoblocking using nanoparticles 20nm AuNP 200 nm pores Responses to blood samples spiked with CA15-3 Effect of AuNP size and Ag enhancement on blocking RSD of 8% ([CA15-3]: 120 U/mL; n=3) Responses to human IgG using 20-nm AuNPs; 80-nm AuNPs; 80-nm LOD: 52 IU/mL of CA15-3 AuNP tags anmd Ag enhancement Small, 2011

  12. Protein detection - AuNP & nanochannels Ag enhancement of 80 nm AuNPs 200 nm nanochannel casted with 50 µL blood Spiked with CA15-3 RSD of 8% ([CA15-3]: 120 U/mL; n=3) LOD: 52 IU/mL of CA15-3 Small, 2011

  13. Cell studies based on CdS QDs Collaboration with E.Giralt. (UB) Electrochemical interrogation of cellular uptake of quantum dots decorated with peptide CdS QD-SAP interaction with HeLa cells: A Supernatant a 1  1 μA b Cells Lisis cells c -1.00 -0.75 -0.50 E/V B a Supernatant 1 μA 1  Cells b Lisis cells c -1.00 -0.75 -0.50 E/V SWV and CLSM images of cells incubated with QDs incluiding blanks

  14. Cells detection based on AuNP & H 2 catalysis Collaboration with Dr. A. González (UV) Immunoelectrochemistry Cancer cell detection (ICN&UV patent) HMY: Tumoral A A 2H + 2H + H 2 H 2 human B cell line with expressed H + H + HLA-DR Immunofluorescence molecules b b c c d d a a H 2 H 2 2H + 2H + B B PC3: a ’ a ’ Tumoral human H + H + prostate b ’ b ’ c ’ c ’ cell line d ’ d ’ Immunofluorescence analysis by flow 4000 cells per 700 µL suspension cytometry and electrochemical analysis of both HMy2 and PC-3 cell lines agreed. AuNP & AuNP-Ab detection A A t / s t / s E / V E / V A A H 2 H 2 2H + 2H + 0 0 100 100 200 200 300 300 -1.5 -1.5 -1.0 -1.0 -0.5 -0.5 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 5 5 0 0 a ’ a ’ -5 -5 a a b ’ b ’ b b -15 -15 c ’ c ’ i /  A i /  A -50 -50 c c i /  A i /  A d ’ d ’ d d -25 -25 e ’ e ’ e e -35 -35 -100 -100 f ’ f ’ f f -45 -45 g ’ g ’ g g -150 -150 -55 -55 B B E / V E / V t / s t / s -1.5 -1.5 -1.0 -1.0 -0.5 -0.5 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 0 0 100 100 200 200 300 300 H 2 H 2 2H + 2H + 0 0 B B a ’ a ’ 0 0 a a -10 -10 i /  A i /  A i /  A i /  A -50 -50 -20 -20 -100 -100 -30 -30 b b b ’ b ’ -150 -150 -40 -40 Analytical Chemistry, 2009, 81, 10268 – 10274

  15. Catalytic Nanoparticles for Detection of circulating Cancer Cells (CTC) (Collaboration with Prof. C.Nogues, UAB) HER based biosensing device developed by Nanobioelectronics & Biosensors Group LEITAT Simple nanoparticle based technology Small 2012, 8, No. 23, 3605 – 3612 Nano Lett., 2012, 12 (8), pp 4164 – 4171

  16. Tailoring graphene production toward biosensors applications Merkoçi et al. Carbon 2012 , 50: 2987 - roll to roll - ink-jet printing - screen-printing - graphene composites / inks Graphene Oxide as an Optical Biosensing Platform Merkoçi et al. Adv Mater 2012 DOI: 10.1002/adma.201200373

  17. WATER POLLUTION Water, air and soil pollution causes 40 % of deaths worldwide http://www.news.cornell.edu Water-related diseases are one of the leading causes of death worldwide. Over 3 million people die each year. http://worldsavvy.org/monitor Pesticides Phenols Heavy metals Bacteria Toxins etc.

  18. Monitoring water quality should be done periodically to check for aquatic problems in-field sensing systems are necessary

  19. QuickShip Water Treatment Equipment www.ge-energy.com Micro-Klean ™ Industrial Wastewater Treatment Systems Solutions are needed for smart systems that can detect pollutants and evaluate the efficiency of their removal

  20. In-situ smart sensors and evaluators of the pollutants removal efficiency - High sensitivity for various potential pollutants - Versatility in evaluating pollutants removal efficiency - Easy to be integrated - Cost / efficiency Pesticides Detect pollutants and gives qualitative Phenols & quantitative information for Heavy metals their destruction/removing strategies. Bacteria Others

  21. Pesticides Phenols Heavy metals Bacteria Others Nanomaterials based Nanomaterials with high biosensing devices and selective adsorbing / photacatalytic properties Sensitivity Stability Versatility Cost / efficiency

  22. INDEX  Introduction – Our motivation and detection systems  Lab-on-a-chip systems: Detection of pesticides and phenols  Lateral flow / nanomotors based biosensing platforms  Future perspectives & conclusions

  23. Pesticides detection Lab-on-a-chip for ultrasensitive detection of carbofuran by enzymatic inhibition with replacement of enzyme using magnetic beads. A A f f e e g g a a d d c c II II III III b b I I B B Lab Chip, 9, 213 – 218, 2009

  24. Pesticides detection II II II 1 1 1 I I I d d d III III III II II II 2 2 2 I I I d d d III III III II II II 3 3 3  S S I I I d d d  blank inhibition  % I 100 III III III S blank II II II 100 4 4 4 90 60 s injection d d d I I I 90 s injection 80 70 III III III 60 II II II % Inhibition 50 5 5 5 40 d d d I I I 30 20 III III III 10 II II II 0 0 5 10 15 20 6 6 6 [Carbofuran] (ppb) d d d I I I L.O.D: 0,34 ppb III III III (90” inhibit. time; 5% inhibit) Enzyme-labelled Enzyme-labelled Enzyme-labelled Enzyme-labelled Pesticide Pesticide Pesticide Pesticide Magnet Magnet Magnet Magnet ATCh ATCh ATCh ATCh TCh TCh TCh TCh magnetic beads magnetic beads magnetic beads magnetic beads Lab Chip, 9, 213 – 218, 2009.

  25. Phenolic compounds detection REACTION OF CATECHOL &TYROSINASE USING A BIO-CONJUGATE ON SCREEN PRINTING ELECTRODE (SPE) O-Quinone MWCNT Magnetic nanoparticle (size: 100 nm) O 2 +2H + +2e - Tyrosinase SPE Catechol Magnet Advanced Functional Materials , 2010

Recommend


More recommend