approximation of mean curvature motion with nonlinear
play

Approximation of mean curvature motion with nonlinear Neumann - PowerPoint PPT Presentation

Approximation of mean curvature motion with nonlinear Neumann conditions Yves Achdou joint work with M. Falcone Laboratoire J-L Lions, Universit e Paris Diderot Padova 2012 Y. Achdou HYP2012 Padova The boundary value problem The PDE


  1. Approximation of mean curvature motion with nonlinear Neumann conditions Yves Achdou joint work with M. Falcone Laboratoire J-L Lions, Universit´ e Paris Diderot Padova 2012 Y. Achdou HYP2012 Padova

  2. The boundary value problem The PDE �� � � ∂u I − Du ⊗ Du D 2 u ∂t − trace = 0 , in Ω × (0 , T ) , | Du | 2 where Ω is a bounded domain of R d with a W 3 , ∞ boundary. Initial condition u ( x, · ) = u 0 , Y. Achdou HYP2012 Padova

  3. The boundary value problem The PDE �� � � ∂u I − Du ⊗ Du D 2 u ∂t − trace = 0 , in Ω × (0 , T ) , | Du | 2 where Ω is a bounded domain of R d with a W 3 , ∞ boundary. Initial condition u ( x, · ) = u 0 , Boundary condition: the normal vectors to the level sets make a given angle with the outward normal vector ∂u ∂n = θ | Du | on ∂ Ω × (0 , T ) , where θ is a Lipschitz continuous function with | θ ( x ) | ≤ θ < 1. Y. Achdou HYP2012 Padova

  4. Other forms of the PDE ∂t − ∆ u + ( D 2 u Du, Du ) ∂u = 0 | Du | 2 or � Du � ∂u ∂t − div | Du | = 0 . | Du | Y. Achdou HYP2012 Padova

  5. Other forms of the PDE ∂t − ∆ u + ( D 2 u Du, Du ) ∂u = 0 | Du | 2 or � Du � ∂u ∂t − div | Du | = 0 . | Du | Goal Propose a semi-Lagrangian scheme for the PDE (extension of Carlini-Falcone-Ferretti, JCP 2005 and Interfaces and Free Boundaries, 2011) Couple it with a finite difference scheme to deal with the boundary conditions Hereafter, d = 2. Y. Achdou HYP2012 Padova

  6. Some references MCM via viscosity solution techniques Evans-Spruck, J. Diff. Geom., 1991 Evans - Soner-Souganidis, Comm. Pure Appl. Math, 1992, ..... Soner-Touzi, J. Eur. Math. Soc, 2002 and Ann. Prob. 2003 The boundary value problem with nonlinear Neumann cond. Barles, J. Diff. eq. 1999 Ishii-Ishii, SIAM J. Math. Anal. 2001 Numerical methods Osher-Sethian, JCP, 1988 Merriman-Bence-Osher, AMS LN, 1993 Crandall-Lions, Numer. Math., 1996 Barles-Georgelin, SIAM J. Num. Anal., 1995 Catt´ e-Dibos-Koepfler, SIAM J. Num. Anal., 1995 Y. Achdou HYP2012 Padova

  7. Viscosity solutions � � ( I d − p ⊗ p F ( p, X ) = − trace | p | 2 ) X is defined for p � = 0 F and F are the LSC and USC envelopes of F � η + F ( p, X ) if x ∈ Ω , G ( x, η, p, X ) = max( η + F ( p, X ) , p · n − θ | p | ) if x ∈ ∂ Ω � η + F ( p, X ) if x ∈ Ω , G ( x, η, p, X ) = min( η + F ( p, X ) , p · n − θ | p | ) if x ∈ ∂ Ω G is used for subsolutions, G is used for supersolutions Strong comparison principle (Barles 1999) Y. Achdou HYP2012 Padova

  8. Semi-Lagrangian schemes for MCM: (CFF 2011) Representation formula in Ω = R 2 : Soner-Touzi For any regular solution u of the PDE s.t. Du � = 0, u ( x, t ) = E { u 0 ( y ( t ; x, t )) } , where √  � � dy ( s ; x, t ) = 2 P Du ( y ( s ; x, t ) , t − s ) dW ( s ) ,  y (0; x, t ) = x,  P ( q ) = I − qq T 1 � u 2 � − u x 1 u x 2 x 2 i.e. P ( Du ) = . u 2 − u x 1 u x 2 | q | 2 | Du | 2 x 1 Y. Achdou HYP2012 Padova

  9. Semi-Lagrangian schemes for MCM: (CFF 2011) Representation formula in Ω = R 2 : Soner-Touzi For any regular solution u of the PDE s.t. Du � = 0, u ( x, t ) = E { u 0 ( y ( t ; x, t )) } , where √  � � dy ( s ; x, t ) = 2 P Du ( y ( s ; x, t ) , t − s ) dW ( s ) ,  y (0; x, t ) = x,  P ( q ) = I − qq T 1 � u 2 � − u x 1 u x 2 x 2 i.e. P ( Du ) = . u 2 − u x 1 u x 2 | q | 2 | Du | 2 x 1 The representation formula implies that u ( x, t + ∆ t ) = E { u ( y (∆ t ; x, t + ∆ t ) , t ) } . Y. Achdou HYP2012 Padova

  10. A one dimensional Brownian The projector P ( q ) is of the form � − q 2 � σ ( q ) = 1 P ( q ) = σ ( q ) σ T ( q ) , with q 1 | q | W ( s ) ≡ σ T dW ( s ), For the real valued Brownian � W def. by d � � � √ d � dy ( s ; x, t ) = 2 σ Du ( y ( s ; x, t ) , t − s ) W ( s ) . Y. Achdou HYP2012 Padova

  11. A one dimensional Brownian The projector P ( q ) is of the form � − q 2 � σ ( q ) = 1 P ( q ) = σ ( q ) σ T ( q ) , with q 1 | q | W ( s ) ≡ σ T dW ( s ), For the real valued Brownian � W def. by d � � � √ d � dy ( s ; x, t ) = 2 σ Du ( y ( s ; x, t ) , t − s ) W ( s ) . Remarks σ ( Du ) is tangent to the level sets of u . If d > 2, σ is a d × ( d − 1)-matrix and � W is a ( d − 1)-dimensional Brownian motion. Y. Achdou HYP2012 Padova

  12. Semi-discrete scheme when Du � = 0 (1/2) Euler scheme for the stochastic process: y k ≈ y ( t k ; x, t ) with � � √ ∆ � y k +1 = y k + 2 σ Du ( y ( k ∆ t ; x, t ) , t − k ∆ t ) W k , where ∆ � W k ≈ Gaussian variable with mean value 0 and variance ∆ t . Y. Achdou HYP2012 Padova

  13. Semi-discrete scheme when Du � = 0 (1/2) Euler scheme for the stochastic process: y k ≈ y ( t k ; x, t ) with � � √ ∆ � y k +1 = y k + 2 σ Du ( y ( k ∆ t ; x, t ) , t − k ∆ t ) W k , where ∆ � W k ≈ Gaussian variable with mean value 0 and variance ∆ t . For first order accuracy, it is enough that √ ∆ t } = 1 P { ∆ � W k = ± 2 . For t = t n = n ∆ t and k = 0: � � √ = 1 P y 1 = x ± 2∆ t σ ( Du ( x, t n ) , t n ) 2 . Y. Achdou HYP2012 Padova

  14. Semi-discrete scheme when Du � = 0 (2/2) This leads to the semi-discrete scheme for u : � �� � � � 1 Z + Z − u ( x, t n +1 ) = u n ( x ) , t n + u n ( x ) , t n , 2 where √ Z ± n ( x ) ≡ x ± 2∆ t σ ( Du ( x, t n )) , √ Z + n ( x ) = x + 2∆ t σ ( Du ( x, t n )) Du ( x, t n ) x √ Z − n ( x ) = x − 2∆ t σ ( Du ( x, t n )) contour of u ( · , t n ) passing by x Y. Achdou HYP2012 Padova

  15. Fully-discrete scheme for MCM when Du � = 0 Consider a mesh T h of Ω and call ξ a node of T h . The values u ( ξ, t n ) are approximated by u n h ( ξ ) with � � � � √ √ ( ξ ) = 1 + 1 u n +1 2 I h [ u n ∆ tσ n ( ξ ) 2 I h [ u n ∆ tσ n ( ξ ) h ] ξ + h ] ξ − , h where I h is an interpolation operator, √ σ n ( ξ ) = 2 σ ( D h u n h ( ξ )) , and D h is a discrete version of D . Y. Achdou HYP2012 Padova

  16. Fully-discrete scheme for MCM when Du � = 0 Consider a mesh T h of Ω and call ξ a node of T h . The values u ( ξ, t n ) are approximated by u n h ( ξ ) with � � � � √ √ ( ξ ) = 1 + 1 u n +1 2 I h [ u n ∆ tσ n ( ξ ) 2 I h [ u n ∆ tσ n ( ξ ) h ] ξ + h ] ξ − , h where I h is an interpolation operator, √ σ n ( ξ ) = 2 σ ( D h u n h ( ξ )) , and D h is a discrete version of D . Questions Which scheme in the regions where | D h u n h | is small? Which scheme near the boundary? Y. Achdou HYP2012 Padova

  17. A subdivision of Ω depending on a small parameter δ thickness: δ : 1 ≫ δ ≫ h quasiuniform Ω unstructured mesh: h n n ξ + δσ n ( ξ ) ξ ω 1 ξ − δσ n ( ξ ) ω 2 boundary nodes: finite difference scheme strongly internal nodes: semi-lagrangian scheme the triangles have acute angles in this region In the layers ω k , one can define a system of orthogonal coordinates by projecting the points orthogonally onto ∂ Ω. Similarly, one can lift the outward unit vector n into ω k . Y. Achdou HYP2012 Padova

  18. The scheme in the layer ω ℓ The nonlinear Neumann condition is not only imposed at the nodes on ∂ Ω, but also at all the boundary nodes in ω ℓ . We use the lifting of n and a monotone scheme: B ℓ ( ξ i , u n +1 , [ u n +1 ] ℓ , [[ u n ]]) = 0 , for all i s.t. ξ i ∈ ω ℓ i where [ u ] ℓ = { u j , 1 ≤ j ≤ N h , j � = i, ξ j ∈ ω ℓ } , [[ u ]] = { u j , 1 ≤ j ≤ N h , ξ j is strongly internal } . For example, a first order Godunov like scheme can be used. Y. Achdou HYP2012 Padova

  19. The scheme in the layer ω ℓ The nonlinear Neumann condition is not only imposed at the nodes on ∂ Ω, but also at all the boundary nodes in ω ℓ . We use the lifting of n and a monotone scheme: B ℓ ( ξ i , u n +1 , [ u n +1 ] ℓ , [[ u n ]]) = 0 , for all i s.t. ξ i ∈ ω ℓ i where [ u ] ℓ = { u j , 1 ≤ j ≤ N h , j � = i, ξ j ∈ ω ℓ } , [[ u ]] = { u j , 1 ≤ j ≤ N h , ξ j is strongly internal } . For example, a first order Godunov like scheme can be used. Given the values at the strongly internal nodes, this is a system of nonlinear equations which can be solved by combining Gauss-Seidel sweeps with different orderings. Y. Achdou HYP2012 Padova

  20. The scheme at the strongly internal nodes (1/2) Ingredients I h : Lagrange interpolation operator associated with P 1 finite elements Y. Achdou HYP2012 Padova

  21. The scheme at the strongly internal nodes (1/2) Ingredients I h : Lagrange interpolation operator associated with P 1 finite elements D h : discrete gradient reconstructed at the mesh nodes. For example, � | τ | [ D h v ]( ξ i ) = | ω ξ i | D ( I h [ v ] | τ ) . τ ∈T h,i Set D n i = [ D h u n ]( ξ i ). Y. Achdou HYP2012 Padova

  22. The scheme at the strongly internal nodes (1/2) Ingredients I h : Lagrange interpolation operator associated with P 1 finite elements D h : discrete gradient reconstructed at the mesh nodes. For example, � | τ | [ D h v ]( ξ i ) = | ω ξ i | D ( I h [ v ] | τ ) . τ ∈T h,i Set D n i = [ D h u n ]( ξ i ). Two internal regions: given two positive numbers C and s , the two sets of indices J n 1 and J n 2 are defined as follows: J n 1 = { i : ξ i is strongly internal and | D n i | ≥ Ch s } , J n 2 = { i : ξ i is strongly internal and | D n i | < Ch s } . Y. Achdou HYP2012 Padova

Recommend


More recommend