approaches to integrating source and plume treatment
play

Approaches to Integrating Source and Plume Treatment Strategies for - PowerPoint PPT Presentation

Approaches to Integrating Source and Plume Treatment Strategies for Long-Term Dilute Plume Management Kent S. Sorenson, Jr., PhD, PE June 20, 2012 Presentation Overview Background Potential degradation mechanisms Strategies for


  1. Approaches to Integrating Source and Plume Treatment Strategies for Long-Term Dilute Plume Management Kent S. Sorenson, Jr., PhD, PE June 20, 2012

  2. Presentation Overview • Background • Potential degradation mechanisms • Strategies for technology integration

  3. BACKGROUND

  4. Test Area North • 1.5-mi TCE plume • 200 ft to water • 200-ft contaminated thickness • Sludge injection well at source • 1995 ROD – Pump and treat – 100-year cleanup

  5. Fringe and Core Hypothesis (Cherry, 1996) • Generic chlorinated solvent plume conceptual model CORE FRINGE Mass Flux • 10 2 m, • 10 3 µ g/L • 10 3 m, • 10 2 µ g/L

  6. POTENTIAL DEGRADATION MECHANISMS

  7. Anaerobic Reductive Dechlorination PCE Cl Cl C I Chlorine Atom C C C Carbon Atom Cl Cl C I H Hydrogen Atom Single Chemical TCE Bond Double Chemical Cl Cl Bond C C Cl H 1,1 - DCE cis - 1,2 - DCE trans - 1,2 - DCE Cl Cl H H Cl Cl C C C C C C H H Cl H Cl H Vinyl Chloride H Cl C C H H Complete Mineralization Ethene H H O O O Cl C C C H H H H Ethane H H Modified from H H C C Wiedemeier et al., 1996 H H

  8. Anaerobic Reductive Dechlorination TCE DCE + VC VC + Ethene

  9. Anaerobic Reductive Dechlorination

  10. Anaerobic Reductive Dechlorination DCE Stall Not Always Bad 80 DCE MCL 70 Concentration (ppb) 60 50 TCE (ppb) 40 DCE (ppb) 30 20 TCE MCL 10 0 0 2 4 6 8 10 12 Time (months)

  11. Aerobic Cometabolism • Axial concentration ratios

  12. Aerobic Cometabolism • Aerobic TCE degradation half-life: 12-15 years ( 3 H) • Aerobic DCE degradation half-life: 8-9 years ( 3 H) 3.5 0.0 TCE/PCE -0.5 y = -8.1E-04x + 3.2E+00 3.0 TCE/Tritium -1.0 R 2 = 9.2E-01 ln(TCE/tritium) 2.5 ln(TCE/PCE) -1.5 -2.0 2.0 -2.5 1.5 -3.0 -3.5 1.0 y = -1.3E-03x - 1.4E+00 -4.0 0.5 R 2 = 8.0E-01 -4.5 0.0 -5.0 0 500 1000 1500 2000 2500 3000 Distance, , from Well TSF-05 (m) x Sorenson et al., 2000; Wymore et al., 2007; Lee et al., 2008

  13. Aerobic Degradation • 9 plumes evaluated at 4 DOE sites – Brookhaven National Laboratory – Paducah Gaseous Diffusion Plant – Savannah River Site – Rocky Flats • Aerobic TCE degradation rates evident at 8 out of 9 • Degradation half-life range: 0.85 – 12 years Koelsch et al., 2005

  14. Biogeochemical Reduction by Iron Minerals • Twin Cities Army Ammunition Plant • TCE & DCE half-lives < 2.5 years Concentration of cis -DCE ( µ g/liter) Live Microcosms Autoclaved Controls 10000 Container Controls 1000 100 10 1 100 300 500 700 900 Time of Incubation (days) Ferrey et al., 2004

  15. Biogeochemical Reduction by Iron Minerals • Resources EPA, 2009; ESTCP, 2008

  16. STRATEGIES FOR TECHNOLOGY INTEGRATION

  17. Prerequisites • Identification of intrinsic degradation mechanism • Estimate of intrinsic degradation rate (separate from dispersion) • Reasonable assurance of longevity of mechanism 0 0 -0.5 -0.5 Baetsle (1969) -1 -1.5 Analytical Model -1 /C ) y = -0.14t + 280 o -2 max R 2 = 0.99 ln(C -2.5 -1.5 -3 ln(TCE/TCE ) -3.5 o -2 -4 -4.5 -2.5 0 2 4 6 8 10 12 14 Time -3 -3.5 y = -0.020t + 38 -4 R 2 = 1.0 -4.5 -5 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 Year, t Sorenson et al., 2000

  18. Fringe Types • Active Treatment Fringe (ATF) – Fringe Concentration > MNA capacity Bountiful • • Intrinsic Treatment Fringe (ITF) – Fringe Concentration ≤ MNA capacity TAN • • Well 12A

  19. Active Treatment Fringe • Source removed/contained • Active treatment required in fringe to meet cleanup goals Mass Flux

  20. Bountiful/Woods Cross Superfund Site Biobarrier Fringe Treatment Source Treatment

  21. Bountiful (cont.) • Source treatment (anaerobic reductive dechlorination) started 2008

  22. Bountiful (cont.) • Source flux stopped, downgradient biobarriers installed

  23. Intrinsic Treatment Fringe • Source removed/contained • Intrinsic degradation in fringe sufficient to meet cleanup goals Mass Flux

  24. Test Area North, OU 1-07B • 1997 TCE Distribution MNA Pump & Treat Bioremediation

  25. Test Area North, OU 1-07B • 2009 TCE Distribution DOE, 2012

  26. Test Area North, OU 1-07B • 2011 TCE Distribution DOE, 2012

  27. Test Area North, OU 1-07B • MNA performance monitoring DOE, 2012

  28. Test Area North, OU 1-07B • Zone 1 DOE, 2012

  29. Test Area North, OU 1-07B • Zone 2 DOE, 2012

  30. Test Area North, OU 1-07B • Zone 3 – Up to 30% temporary plume expansion allowed – Actual expansion 8.5% to 15% – Performance appears right on track! DOE, 2012

  31. Well 12A Superfund Site • Tacoma water supply • Significant residual source material Core • Large, dilute plume • Estimated intrinsic degradation limit: 300 µ g/L Fringe

  32. Well 12A Superfund Site • RAOs: – 90% mass discharge reduction from core Core – ARARs at designated points of compliance – Determine if MNA Fringe can meet ARARs in fringe

  33. Well 12A Superfund Site • Detailed 3D source characterization for remedy design to stop mass discharge

  34. Well 12A Superfund Site • Performance monitoring transects established for source treatment • MNA evaluation and performance monitoring underway

  35. Acknowledgments • Kira Lynch (EPA) • John Wilson (EPA) • Sam Garcia (EPA) • Lee Nelson (Idaho National Laboratory) • Tamzen Macbeth (CDM Smith) • Nathan Smith (CDM Smith)

  36. References • Baetsle, L.H. 1969. “Migration of Radionuclides in Porous Media.” In: A. M. F. Duhamel (Ed.), Progress in Nuclear Energy Series XII , Health Physics , pp. 707-730. Pergamon Press, Elmsford, NY. • Cherry, J. A. 1996. “Conceptual Models for Chlorinated Solvent Plumes and Their Relevance for Intrinsic Remediation.” In: Symposium on Natural Attenuation of Chlorinated Organics in Ground Water , pp. 29-30. Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, EPA/540/R-96/509. • DOE. 2012. Annual Report for the Final Groundwater Remediation, Test Area North, Operable Unit 1-07B, Fiscal Year 2011 . DOE/ID-11464, Revision 0. 81 pp. EPA. 2009. Identification and Characterization Methods for Reactive Minerals Responsible • for Natural Attenuation of Chlorinated Organic Compounds in Ground Water. EPA 600/R-09/115. December. • ESTCP. 2008. Workshop on In Situ Biogeochemical Transformation of Chlorinated Solvents. February. • Ferrey, M. L., R. T. Wilkin, R. G. Ford, and J. T. Wilson. 2004. “Nonbiological Removal of cis- Dichloroethylene and 1,1-Dichloroethylene in Aquifer Sediment Containing Magnetite.” Environmental Science &Technology . 38(6):1746-1752.

  37. References (cont.) • Koelsch, M., R. C. Starr, and K. S. Sorenson, Jr. 2005. “Assessing Aerobic Natural Attenuation of Trichloroethene at Four DOE Sites.” Proceedings of the Waste Management 2005 Conference, Tucson, AZ. • Lee, M. H., S. C. Clingenpeel, O. P. Leiser, R. A. Wymore, K. S. Sorenson, Jr., and M. E. Watwood. 2008. “Activity-Dependent Labeling of Oxygenase Enzymes in a Trichloroethene-Contaminated Groundwater Site.” Environmental Pollution . 153(1):238- 246. 2009. Sorenson, K. S., Jr., L. N. Peterson, R. E. Hinchee, and R. L. Ely. 2000. An Evaluation of • Aerobic Trichloroethene Attenuation Using First-Order Rate Estimation. Bioremediation Journal , 4(4):337-357. 2000. • Wymore, R. A., M. H. Lee, W. K. Keener, A. R. Miller, F. S. Colwell, M. E. Watwood, and K. S. Sorenson, Jr. 2007. “Field Evidence for Intrinsic Aerobic Chlorinated Ethene Cometabolism by Methanotrophs Expressing Soluble Methane Monooxygenase.” Bioremediation Journal . 11(3):125-139. 2007.

Recommend


More recommend