Application of Granular Kinetics to Ring Processes Jim Jenkins Cornell University with Volker Simon, Brian Lawney, and Joe Burns Dilute, three-dimensional ring: repeat and extend Goldreich and Tremaine’s calculation of the relationship between optical depth and coefficient of restitution. Dense, two-dimensional ring: introduce and interpret a simple numerical simulation of the flow around a moonlet in the absence of gravitational interactions between the moonlet and the disk particles and between the disk particles.
Velocity distribution function: f ( ; ,t)d d c x c x t) c number density: n( , f ( ; , t)d x c x c 1 c Averages: fd c n mean velocity: ( ,t) u c u x velocity fluctuation: = ( ,t) C c u C x second moment: C K C 1 ˆ T tr K , T 1 K K 3 third moment: Q C C C 1 1 Q Q Q Q , q Q ijk ipp jk jpp ki kpp ij i ipp 5 2
Balance equations , 3 mass: mn d n / 6 s 0 u t linear momentum u R GM u u K 3 t R second moment K T u K + K u + K u t Q C C Explicit form n 1 1 f (c; ,t) ex p , K det K x C K C 1/2 2 8 K
Collisions and c pre-collisional velocities, 1 and c c c 1 2 2 post-collisional velocities, unit vector k directed from 1 to 2, coefficient of restitution e, relative velocity C , unit vector j in the plane of g C 1 2 g and k , perpendicular to k . e g k g k 1 e 1 e g k k g k k c c c c 1 1 2 2 2 2 Total change of second moment C C C C C C C C 1 1 2 2 1 1 2 2 1 (1 e)( ) g k 2 (1 e)( ) ( ) g k k k g j k j j k
Collisional production of second moment 1 g k [ ] m f f d( )d d d C C g k k c c 1 2 1 2 2 0 3/2 6 T (1 e) 3/2 d ˆ (1 e) 2 A B g k 3/2 ( / T) d k A k k k Kk 0 ˆ g k 1/2 ( / T) ( / T)d k B k i i k k Kk k Ki 0
Second moment K K / 2T , K K / 2T 1 1 2 1 2 Cylindrical polar: r, , z cos e e r 1 1 cos2 sin 2 0 = T sin 2 1 cos2 0 K 0 0 1 2 Nearly homogeneous , and constant; T T(z), (z), u u u(r)
Balance equations at lowest order 1/2 GM u(r) (r)r, (r) 3 r 4 K Q r rr zrr z K Q r z z 0 Q zz zzz z 1 K 4K Q rr r zr 2 z
Eigenvector basis 3 2 T 1 sin 2 cos Q 11 zrr 2 z 2 sin 2 Q sin Q zr z z z 3 2 T 1 sin 2 sin Q 22 zrr 2 z 2 sin 2 Q cos Q zr z z z 0 Q 33 zzz z 1 1 T 5 3 1 cos2 sin 2 Q zrr 2 2 z Q cos2 Q z zr z z
Integrate the last over z: 5 cos2 3 1 Integrate the isotropic part over z: 6 tr( ) A 1/2 2 2 3/2 3 sin 2 T dz 1 e T dz 3/2 d Using this, the 33 component is ˆ (1 e ) tr( ) A 33 With the last two, the difference between the 22 and 11 components is ˆ 3 1 33 22 11
Approximate 4 2 2 4 2 3 9 2 2 2 3 tr( ) A 70 7 21 2 2 35 4 2 4 2 2 3 2 8 2 2 (1 e) 7 2 22 11 35 6 2 11 11 4 2 2 4 4 6 15 ˆ 2 2 3 2 (1 e) 42 2 6 3 33 105 11 11 11 Solve the last two balance equations for α and β in terms of 1 e 7 1013 2 2 2 396 8 3 2772 2960 9393 1/2 2 8 3 10 12 11 4851 2 2960 9393 2960 9393 1/2 Lowest order in : 5 /14 and 5 / 2
Limitations 5 cos2 3 1 with 1/2 5 5 and 14 2 implies that 0.3688 or e 0.6312 (0.6270)
Isothermal z 0 (1 2 ) T GM 3 z r 2 0 exp 1/2 z 2(1 2 ) T 1/2 6 tr( )T A 2 2 3 sin 2 dz 1 e dz 3/2 d 1/2 6 T 2 3 sin 2 1 e t r( ) A 0 3/2 d 2 Optical depth 1/2 1/2 3 T 1/ 2 (z)dz 3(1 ) 0 d 2 d 0 2 tr( ) A 2 3 sin 2 1 e 2 1/2 (1 )
(z) and T(z ) 2 0 T z z (1 2 ) 6 (2 ) d q 3/2 3 T sin 2 T tr( ) 2 z A 1/2 d d z 1/2 5 d (1 2 )(5 4 ) dT 1/2 q T z 2 2 4(2 ) d 2d T 4d T dz 0 1 2 ˆ 2 9 tr( ) K d 33 49 (1 ) 0 2 28 T 4 (6 13) 4 (6 13) d d 1 2 2 5 T 35 T
Differential Equations 2 1/2 T / T F / z / T 0 0 F F 2 (1 2 ) C C 2 2 3 2 1 F 2 F 2 S S C C ( ) C C ( ) 1 1 2 2 2 3 C F d d 2 S 0 1/2 T 2 C F d 0 0 1 0 Initial Conditions (0) 1 (0) 0 F 0 1
Recommend
More recommend