application of granular kinetics to ring processes jim
play

Application of Granular Kinetics to Ring Processes Jim Jenkins - PDF document

Application of Granular Kinetics to Ring Processes Jim Jenkins Cornell University with Volker Simon, Brian Lawney, and Joe Burns Dilute, three-dimensional ring: repeat and extend Goldreich and Tremaines calculation of the relationship


  1. Application of Granular Kinetics to Ring Processes Jim Jenkins Cornell University with Volker Simon, Brian Lawney, and Joe Burns Dilute, three-dimensional ring: repeat and extend Goldreich and Tremaine’s calculation of the relationship between optical depth and coefficient of restitution. Dense, two-dimensional ring: introduce and interpret a simple numerical simulation of the flow around a moonlet in the absence of gravitational interactions between the moonlet and the disk particles and between the disk particles.

  2. Velocity distribution function: f ( ; ,t)d d c x c x t)   c number density: n( , f ( ; , t)d x c x c 1  c    Averages: fd c n   mean velocity: ( ,t) u c u x   velocity fluctuation: = ( ,t) C c u C x   second moment: C K C 1   ˆ    T tr K , T 1 K K 3    third moment: Q C C C 1 1           Q Q Q Q , q Q ijk ipp jk jpp ki kpp ij i ipp 5 2

  3. Balance equations      ,    3 mass: mn d n / 6 s         0 u  t linear momentum  u R                GM u u K  3 t R second moment  K       T              u K + K u + K u    t           Q C C Explicit form   n 1        1 f (c; ,t) ex p , K det K   x C K C   1/2  2   8 K

  4. Collisions   and c pre-collisional velocities, 1 and c c c 1 2 2 post-collisional velocities, unit vector k directed from 1 to 2, coefficient of restitution e, relative   velocity C , unit vector j in the plane of g C 1 2 g and k , perpendicular to k .       e g k g k   1 e 1 e             g k k g k k c c c c 1 1 2 2 2 2 Total change of second moment              C C C C C C C C 1 1 2 2 1 1 2 2 1 (1 e)(     ) g k 2              (1 e)( ) ( ) g k k k g j k j j k 

  5. Collisional production of second moment 1  g k      [ ] m f f d( )d d d C C g k k c c 1 2 1 2 2   0  3/2 6 T      (1 e)  3/2 d ˆ     (1 e) 2 A B  g k    3/2 ( / T) d k A k k k Kk   0   ˆ  g k       1/2 ( / T) ( / T)d k B k i i k k Kk k Ki   0

  6. Second moment              K K / 2T , K K / 2T 1   1 2 1 2  Cylindrical polar: r, , z cos    e e r 1         1 cos2 sin 2 0         = T sin 2 1 cos2 0 K       0 0 1 2   Nearly homogeneous          , and constant; T T(z), (z), u u u(r) 

  7. Balance equations at lowest order 1/2   GM      u(r) (r)r, (r)  3  r           4 K Q  r rr zrr  z         K Q    r  z z        0 Q zz zzz  z  1           K 4K Q    rr r zr  2 z

  8. Eigenvector basis  3                2 T 1 sin 2 cos Q 11 zrr  2 z             2 sin 2 Q sin Q   zr z   z z  3               2 T 1 sin 2 sin Q 22 zrr  2 z             2 sin 2 Q cos Q   zr z   z z        0 Q 33 zzz  z   1 1               T 5 3 1 cos2 sin 2 Q    zrr 2 2  z             Q cos2 Q    z zr   z  z

  9. Integrate the last over z:  5   cos2    3 1 Integrate the isotropic part over z:   6 tr( )   A         1/2 2 2 3/2 3 sin 2 T dz 1 e T dz  3/2 d   Using this, the 33 component is     ˆ (1 e ) tr( ) A 33 With the last two, the difference between the 22 and 11 components is            ˆ 3 1 33 22 11

  10. Approximate        4 2 2 4 2 3 9             2 2 2 3 tr( ) A  70 7 21 2 2   35 4 2 4           2 2 3 2 8 2 2              (1 e) 7 2   22 11 35 6 2 11 11       4   2 2  4 4 6 15                   ˆ 2 2 3 2 (1 e) 42 2 6 3   33 105 11 11 11   Solve the last two balance equations for α and β    in terms of 1 e 7 1013      2 2 2 396   8 3   2772 2960   9393 1/2     2    8 3 10     12 11 4851     2   2960 9393   2960 9393     1/2 Lowest order in  :      5 /14 and  5 / 2

  11. Limitations  5   cos2    3 1 with   1/2   5 5 and     14 2 implies that   0.3688  or e 0.6312 (0.6270)

  12. Isothermal  z         0 (1 2 ) T GM  3 z r     2       0 exp 1/2 z     2(1 2 ) T     1/2 6 tr( )T   A          2 2 3 sin 2 dz 1 e dz 3/2 d   1/2 6 T        2 3 sin 2 1 e t r( ) A  0  3/2 d 2 Optical depth 1/2   1/2   3 T        1/ 2 (z)dz 3(1 )   0  d  2  d 0 2 tr( )   A       2 3 sin 2 1 e  2 1/2 (1 )

  13.  (z) and T(z )   2       0 T z    z (1 2 )    6 (2 ) d q       3/2 3 T sin 2 T tr( ) 2 z A  1/2 d d z       1/2 5 d (1 2 )(5 4 ) dT  1/2 q T z        2 2 4(2 ) d 2d T 4d T dz 0 1 2 ˆ 2 9 tr( ) K         d 33 49 (1 ) 0 2 28 T     4 (6 13) 4 (6 13)    d d 1 2 2 5 T 35 T

  14. Differential Equations   2       1/2 T / T F / z / T 0 0    F       F 2       (1 2 )    C C           2 2 3 2 1 F 2 F 2 S S     C C ( ) C C ( ) 1 1 2 2     2 3 C F d  d 2   S 0   1/2 T    2 C F d 0 0 1 0 Initial Conditions         (0) 1 (0) 0 F 0 1

Recommend


More recommend