Application of CLTDs* for the investigation of Z-yield distributions of fission fragments NUSTAR Annual Meeting 2018, GSI (Germany) 26 th Feb – 2 nd Mar 2018 Talk by: Santwana Dubey (PhD) PhD Supervisor – Prof. Dr. Peter Egelhof Institute of Physics, Johannes Gutenberg University Mainz GSI Helmholtz Center for Heavy Ion Research Darmstadt *CLTDs – Calorimetric Low Temperature Detectors
Motivation motivation for studying fission fragment yields: Various nuclear energy applications better understanding of the nuclear fission process data relevant for reactor physics Application of CLTDs for fission studies! Thermal neutron induced fission reactions neutrons neutron target nucleus fission fragments
Outline Calorimetric Low Temperature Detectors: • Concept • Advantages • Design Nuclear Charge Distribution Measurements: • Experimental Set-up • Preliminary results: First time direct Z-yield determination for heavy fragment masses - Using passive absorber method Proton odd-even effect in masses approaching symmetric fission for 239 Pu & 241 Pu - - Important for nuclear model description near scission Precise 92 Rb & 96 Y yields for 235 U, 239 Pu, 241 Pu (n th , f) - - Important for reactor antineutrino anomaly studies 3
CLTDs: Introduction Calorimetric Detector → detec�on of heat Idea: detection of particle energy independent of ionization processes ° particle thermometer phonons Interaction of ions with matter: Potential Advantages: • Primary: • energy resolution Ioniza�on → ioniza�on detectors • energy linearity • Secondary: • detection threshold thermaliza�on → calorimetric detectors (conversion of energy to heat • variety of detector materials detection of thermal phonons) 4
CLTDs: Advantages Si Detector CLTDs E(FWHM)= E(FWHM) = Counts/bin Counts/bin 1k 300 2808 keV 91 keV Energy Resolution ( 238 U @ 20.7MeV) 0 0 15 20 25 15 20 25 Energy [MeV] Energy [MeV] Pulse height [ADC channels] Pulse height [ADC channels] 4 He 13 C 6k 2k 13 C Pulse Height 197 Au 197 Au 238 U Defect 238 U ( 13 C, 197 Au, 238 U ) 3k 1k C, Au, U 0 0 0 30 60 0 10 20 Energy [MeV] Energy [MeV] Losses at energy conversion: More complete energy detection Due to dead layer, →Be�er resolu�on and linearity charge recombination Plots from: Kraft-Bermuth et al., Rev. Sci. Instrum. 80, 103304 (2009) 5
CLTDs: Detection Principle Absorber thermal signal: Incident particle temperature Thermometer with energy E T T + T t 1 t 2 ΔT time Heat sink 1 – 10 s Rise-Time Absorber: 100 s – 10 ms Decay-Time (C/k) Particle energy is converted into heat, E ΔT c m High sensitivity for small specific heat c and small mass c ̴ (T 3 /Ɵ D 3 ) from Debye law (for insulators, superconductors) Operation at Low Temperatures 6
CLTDs: Detection Principle Absorber 150 normal state Incident particle Thermometer with energy E 100 T T + T R [k ] operation temperature 50 transition region: super- dR/dT const conducting 0 Heat sink 1.60 1.62 1.64 1.66 T [K] Thermometer: Transition Edge sensors are used. • Resistance (superconductor) biased with constant current. • ∆T→∆R(T)→∆V voltage signal is detected. Detector temperature stabilized in phase transition region high dR/dT. • 7
CLTDs: Current Detector Design Sapphire Sapphire Thermometer 3 x 3 x 0.43 mm 3 Transition Edge Sensor absorber absorber Incident particle 10 nm thick meander shaped Al-layer Heater strip T T + T 25μm Au/Cr strip R (T) Operational Temperature: 1.5 – 1.6 K T ~ 1 K Heat sink Active area: 15×15mm 2 (25 pixels) S. Kraft-Bermuth et al., Rev. Sci. Instrum. 80 , 2009 A.Echler et al., J. Low Temp. Phys. 167 , 2012, 8
CLTDs: Current Detector Design windowless 4 He bath cryostat Sapphire Sapphire Thermometer absorber absorber Incident particle T T + T Operational Temperature: 1.5 – 1.6 K T ~ 1 K Heat sink 9
Z- distributions of fission fragments (n th ,f) light fragment group Methods for Z- separation: K.H. Schmidt et al. Radio chemistry -spectroscopy restricted to particular nuclides Passive-absorber method symmetry U. Quade et al., Nucl. Phys. A487 (1988) 1 region best Z-resolution with: • Parylene C absorbers • ionization chamber restricted to light fragment group heavy fragment group absorber E(Z) A = const E(Z) = E 0 - E(Z) E 0 (Z)= const energy fission fragments detector Z 2 Z 1 energy residual energy 10
Z- distributions of fission fragments (n th ,f) light fragment group Methods for Z- separation: K.H. Schmidt et al. Radio chemistry -spectroscopy restricted to particular nuclides Passive-absorber method symmetry U. Quade et al., Nucl. Phys. A487 (1988) 1 region best Z-resolution with: • Parylene C absorbers • ionization chamber restricted to light fragment group heavy fragment group Preliminary results from CLTDs using SiN absorber foils: SiN foils: First time possible to measure in the heavy mass • Homogeneity region. • High thermal stability New measurements in the light mass region • Extreme hardness approaching symmetric fission for 239 P(n th ,f) and • Chemical inertness 241 Pu(n th ,f). Precise yield determination of 92 Rb, 96 Y. 11
Investigation of Z- distributions of fission fragments (n th ,f) Experimental Set-up LOHENGRIN mass separator High flux neutron source Electrostatic deflector Target Dipole magnet cryostat Filters a specific A, E and Q but not Z. CLTD array SiN absorber foil stacks 10×16mm Manipulator for changing foil stacks 12
Z-Resolution: Optimum thickness of SiN residual energy spectra Systematic studies: A = 89, E= 94MeV Z-Resolution vs SiN foil 1 m 4 m 300 36 Kr 200 thickness 200 35 Br 100 100 37 Rb 0 0 21000 22000 12000 300 5 m 6µm 400 36 Kr 36 Kr 300 200 counts 50 200 35 Br 35 Br 100 100 37 Rb 37 Rb 40 0 0 10000 11000 7000 8000 300 7µm 8 m 30 36 Kr 36 Kr 100 200 A=96, Z=40 A=89, Z=35 35 Br 20 100 35 Br 37 Rb 37 Rb 0 1 2 3 4 5 6 7 8 9 0 0 foil thickness [µm] 5000 6000 3000 4000 Residual energy (a.u.) 13
Procedure for determining Z-yields fit of spectrum 241 Pu 150 13k 43 Tc Z=39 A=108 - relative Z-Yield peak position Z=41 Counts/bin 100 44 Ru - line shape from Tandem Z=43 42 Mo 241 Pu 50 12k experiment (for heavy masses) 45 Rh E=100MeV Z-Identification 0 30 35 90 100 110 mass take into account Residual Energy (MeV) 15 A = 92 - energy dependence A = 92 0.15 E = 94MeV Q=20 isotopic yield [a.u.] isotopic yield [a.u.] - electronic charge state 10 0.10 Sr Rb Sr dependence (ns-isomers) Kr Rb 5 0.05 Kr absolute normalization 0 0.00 - target burnup 15 20 25 30 80 90 100 110 Energy (MeV) ionic charge state, Q 100 Burn-up Exponential fit for Z-Yield of one mass: Burn-up 75 upto 300 spectra to be analyzed 235 U 50 0 5 10 15 14 Time (Days)
Resolution Quality of Z-Separation Light mass region A=89 Mass 7 m SiN foils E in =94MeV 80 90 100 110 120 130 235U(nth,f) 60 36 Kr 35 Br 37 Rb Symmetry region 40 A=108 6 m SiN foils 43 Tc Ein=100MeV Z/ Z counts 241 Pu(n th ,f) 44 Ru 42 Mo 20 CLTD + SiN (ILL 2016, E = 94-100 MeV & 80 MeV for Z=52) 45 Rh CLTD + SiN (MLL 2016, E/A = 80/127 MeV/u) Heavy mass region ---------------------------------------------------------------------------------- A. Djebara et al. Nuclear Physics A496 (1989) 346 IC + Parylene C (Djebara et al., E = 101-106 MeV) A=130 U. Quade et al., Nucl. Phys. A487 (1988) 1 IC + Parylene C (Quade, E = 98 MeV) 6 m SiN foils 0 E in =88MeV 32 36 40 44 48 52 51 Sb 239 Pu(n th ,f) Nuclear Charge Z 50 Sn CLTD+SiN: good resolution & linearity →Possibility to measure in symmetry & heavy 52 Te Residual energy (a.u.) mass region 15
Heavy mass analysis First direct Z-yield measurements in Heavy mass region: Standard method for unresolved peaks: Constrained fits with - good statistics (≈10000 counts) - good knowledge of response function With same set-up, measurements at similar mass and energy at MLL tandem tandem accelerator, allow to estimate the response function for the residual energy spectra. Stable fits for measured distributions. 600 A = 129 A = 130 A = 128 E = 88MeV E = 88MeV 400 E = 88MeV 800 6 SiN foils 6 SiN foils 6 SiN foils Z=50 Z=50 400 Z=51 Counts Counts Counts Z=50 200 400 200 Z=51 Z=49 Z=49 Z=51 Z=52 0 0 0 5000 5500 5000 5500 5000 5500 Residual Energy (a.u.) Residual Energy (a.u.) Residual Energy (a.u.) Preliminary Results 16
Heavy masses Z-yields Analysis width asymmetry 150 asymmetric parameter width parameter 100 125 100 50 75 0 128 130 132 134 136 138 128 130 132 134 136 138 Mass Mass separation Z-Identification d1 52 Z=49 4750 51 50 d2 400 Peak Position (a.u.) 53 separation 54 4500 55 200 xc1 xc2 4250 xc3 0 128 130 132 134 136 138 128 130 132 134 136 138 Mass Mass 17
Recommend
More recommend