ansto accelerator capabilities for materials
play

ANSTO Accelerator Capabilities for Materials Characterisation - PowerPoint PPT Presentation

ANSTO Accelerator Capabilities for Materials Characterisation Mihail Ionescu, Rainer Siegele, David Cohen Mihail.Ionescu@ansto.gov.au IAEA Vienna 15-19 Sept 2008 Outline: ANSTOs Ion Beam Accelerators Examples from ANSTOs research


  1. ANSTO Accelerator Capabilities for Materials Characterisation Mihail Ionescu, Rainer Siegele, David Cohen Mihail.Ionescu@ansto.gov.au IAEA Vienna 15-19 Sept 2008

  2. Outline: • ANSTO’s Ion Beam Accelerators • Examples from ANSTO’s research projects on the use of accelerators for characterization of materials

  3. ANSTO’s Ion Beam Accelerators ANTARES (Australian National Tandem for Applied Research). • Opened in September 1991. • 10 MV heavy ion machine (HVEE) with 3 ion sources and 5 high energy beamlines (2 IBA and 3 AMS). • Can accelerate most ions in the periodic table (H- U) STAR (Small Tandem for Applied Research). • Opened in January 2005. • 2 MV heavy ion machine (HVEE) with 3 ion sources and 3 high energy beamlines (2 IBA and 1 AMS 14C). • Can accelerate (H, He, C)

  4. Ion Beam Accelerators Usage • To provide accelerator based expertise for: - internally and externally driven research with Australian Universities, CSIRO, Local and State Governments, industry and international organisations including the International Atomic Energy Agency (IAEA) - training for local and international researchers, workshops, fellowships etc for developing countries in our region • Main techniques include: - Ion Beam Analysis (IBA): PIXE, PIGE, RBS, ERDA, RToF, NRA and Heavy ion µ-probe (X-ray mapping; lithography; IBIC) - Accelerator Mass Spectrometry (AMS) – 14 C, 10 Be, 26 Al, 129 I, Actinides

  5. ANTARES AMS: Microprobe Actinides NEC alphatross ANTARES 10 MV Tandem 860 HVEE 846 single multi sample AMS: C, Be, Al IBA-ToF • Microprobe: µ -PIXE; µ -RBS • ToF: Heavy ion ERDA; RBS; ion implantation 10m • AMS: 14 C, 10 Be, 26 Al, 129 I, Actinides

  6. STAR 846B AMS 14 C Recombinator Ion Source Ionisation IBA chamber Beam line 2 358 Ion Source 2MV HVEE Tandetron Accelerator IBA Beam line 1 5m • SIBA1: Automated PIXE; PIGE; RBS; PESA • SIBA2: He-ERDA; Variable angle RBS; NRA • AMS ( 14 C) dating

  7. IBA Materials Projects at ANSTO • Elemental analysis (PIXE, PIGE) • Characterization of thin films near-surface layers and interfaces: - thickness (RBS, NRA, variable angle RBS) - depth profile of elements (RBS, NRA, ERDA) - defects (variable angle RBS-channelling) - 2D mapping ( µ -PIXE; µ -RBS) • Modification of thin films, near-surface layers and interfaces: - ion implantation (conductive polymers; ZnO/STO; other) • Device testing (IBIC, single event upset) Can do: • Materials testing for radiation damage • Micro-machining • Ion beam induced chemical reactions

  8. PIXE, PIGE: Aerosols in Asia PIXE, PIGE: Aerosols in Asia • Large throughput of samples • PMF→Source identification • Events correlation (back trajectories) • Large database Lead vs Bromine Mascot 1992-2000 1200 1000 Pb=(2.12±0.30)*Br +(27±29) Pb (ng/m 3 ) R 2 =0.98 800 600 400 Sado 200 Is. 0 D 0 100 200 300 400 500 us Br (ng/m 3 ) Cheju Mascot 1992-2000 t Is. 1000 S 900 800 3 ) Lead (ng/m 700 600 500 Hong 400 300 Kong Hanoi 200 100 0 Manila 0 1 2 3 4 5 6 7 8 9 0 9 9 9 9 9 9 9 9 9 9 0 - - - - - - - - - - - c c c c c c c c c c c e e e e e e e e e e e D D D D D D D D D D D

  9. PIXE, PIGE: Study of Archaeological Artefacts [1] • Non destructive • Large throughput • PMF→Source identification • Ancient trade routs identified [1] T. Doelman, R. Torrence, V. Popov, M. Ionescu, N. Kluyev, I. Sleptsov, I. Pantyukhina, P. White and M. Clements, Geoarchaeology 23, 234, (2008)

  10. PIXE Bremsstrahlung [1] Be 1843 µ g/cm 2 • Important for quantitative analysis • Theoretical background calculated for 3MeV protons on C [2] C 1767 µ g/cm 2 • Data corrected for self absorption; detector efficiency; γ -ray background component and normalised to unit charge ( µ C), unit solid angle (Sr) and unit target thickness ( µ g/cm 2 ) • Normalised yield (Yld) was fitted to a 9-th order polynomial [1] D. D. Cohen, E. Stelcer, R. Siegele, M. Ionescu, M. Prior, NIM B 266, ln(Yld)=a 0 +a 1 ln E x +a 2 (ln E x ) 2 +…+a 9 (lnE x ) 9 1149-1153, (2008) [2] K. Murozono, K. Ishii, H. Yamazaki, S. Matsuyama, S. Iwasaki, NIM B 150, 76, (1999)

  11. Heavy Ion Microprobe Heavy Ion Microprobe • Spot sizes of 1-10µm • 1-10 nA target current Focussing of ions with Me/q 2 = 100 (H to U) • • 2D mapping • Applications: � 2D mapping ( µ -PIXE, µ -RBS) � Nuclear reactions � Resonances � Heavy Ion Elastic Recoil Detection 1-2 µm spot size at 100 pA; 3MeV H � IBIC � Ion Beam Lithography Au Cr 50 x 50 µm

  12. Elemental Mapping using the Ion Microprobe Elemental Mapping using the Ion Microprobe sea spray FeS ores Exposed Filter cars PIXE Spectrum of Aerosol Filter Unexposed Filter 50µm soil

  13. [1] by IBIC [1] Characterization of Microdosimeters Microdosimeters by IBIC Characterization of Charge collection maps of 20 MeV C 4+ beams on Silicon on Insulator (SOI) micro-dosimeters K Ca K Ni [1] I. M. Cornelius, R. Siegele, I. Orlic, A. B. Rosenfeld, D. D. Cohen, NIM B 210, 191, (2003)

  14. Single Ion irradiation [1] E LET elect LET nucl Ion (MeV) (eV/nm) (eV/nm) Low Medium High H 2 15 <0.1 MARC He 2 150 0.1 MARC PMMA C 30 44 0.3 ANSTO Si C 9 760 0.8 ANSTO F 8 1380 2.8 ANSTO Cu 6 1460 77 ANSTO • Damage in tracks depend on LET • Diameter of a damage track is F damage AFM tracks ~10nm • Used in single ion implant and high resolution IB lithography 100nm [1] A. Alves, P. Reichart, R. Siegele, P. N. Johnston, D. N. Jamieson, NIM B 249, 730, (2006)

  15. Ni Uptake in Plants [1] • Study of Hybantus Floribundus- a Ni hyperaccumulator • Thin sections (~10 µm) freeze substitution • Localization of Ni in various parts of the plant Leaf cross-section scan : - current 0.8 nA - spot size 3 µm - count rate 2 kHz 50 µm 100 µm 100 µm K Ca Ni [1] R. Siegele, A. G. Kachenko, N. P. Bhatia, Y. D. Wang, M. Ionescu, B. Singh, A. J. M. Baker, D. D. Cohen, X-ray Spectrometry 37, 133, (2008)

  16. RBS: multi-layer MgB 2 /Mg 2 Si/Al 2 O 3 [1] 1+ • Role of Mg 2 Si layers in increasing the pinning 4 2.0x10 2MeV He C-Al 2 O 3 o 15 • comparison with single MgB 2 film o 75 4 1.5x10 8x 15 nm Mg 2 Si • Increase in activation energy U 0 9x 80 nm MgB 2 Yield [cts/2 µ C] • Increase in anisotropy of U 0 4 1.0x10 experimental simulated B O 3 Mg 5.0x10 Al Si 0.0 50 100 150 200 250 300 Channel No [1] Y. Zhao, M. Ionescu, P. Munroe, S. X. Dou, APL 88 , 012502, (2006)

  17. RBS: channelling in Si 700 Ti Exp • Study of Al-Ti-C MAX phase [1] O in MgO 600 Simul C C O • Part of C diffused in Si (001) substrate 500 Mg Yield [cts/1.2 µ C • A buried layer of C by channelling of 2MeV He + in Si Al Ti 400 Nd Mg • Substrate replaced by MgO 300 200 Al Nd Surface 100 0 50 100 150 200 250 300 350 + (111) 1MeV He Channel No 5000 Detector 4000 RBS yield [cts/200 µ C] (111) 3000 + 1MeV He (101) (101) C 2000 1000 Detector 0 Surface 200 400 600 800 1000 1200 1400 Energy [keV] [1] J. Rosen, P. O. A. Persson, M. Ionescu, A. Kondyurin, D. R. McKenzie, M. M. M. Bilek, APL 92 , 064102, (2008)

  18. HeERDA-SBD: Hydrogen in SiN x thin film [1] 60 Si Wafer He thin SiN 50 recoiled (He) M 1 (He) x E 0x thick SiN Surface H M 2 (H) 40 E 0 E 1x H Yield [counts] α 30 H SiN x :H Si β θ 20 E 2 E 1 At depth x: At the surface: 2 E d 4 M M cos θ  x dE  scattered (He) 1 2 0 x = − E = E E k E 1  0  1 0 x 10 2  cos α dx  ( M + M ) 1 2 dE Filter x 1 x E = E − ∆ E ( E ) E E = − d 1 foil 1 2 1 x cos β dx recoiled (H) 0 E = E − ∆ E ( E ) d 2 foil 2 Energy Detector 0 200 400 600 800 1000 Y [ cts ] cos α 2 N [ at / cm ] = N- number of ions incident on sample surface d Energy [keV] σ N Ω i Ω - detector solid angle d Ω σ - scattering cross section 2 2 + d σ [ Z Z e ( M M )] 1 2 1 2 = 2 2 Ω d 4 E M cos θ 0 2 25 20 SiN70 15 10 5 2 ] 0 • Passivating role of Hydrogen in thin 15 H/cm 25 SiN20 20 SiN x films 15 Hydrogen [x10 10 • Depth of analysis: up to few 100nm 5 0 25 • Depth resolution: few nm 20 Si 15 10 • Sensitivity: ~0.1 at% 5 0 0 200 400 600 800 1000 15 at/cm 2 ] Depth [x10 [1] M. Ionescu, B. Richards, K. McIntosh, R. Siegele, E. Stelcer, O Hawas, D. D. Cohen, T. Chandra, Materials Science Forum Vols. 539-543, pp. 3551-3556, (2007)

Recommend


More recommend