Anonymity Networks Laslo Hunhold Mathematisches Institut Universität zu Köln 27th July 2017 In the lecture ‘Information Theory and Statistical Physics’ by Prof. Dr. Johannes Berg
motivation
motivation ◮ hide initiator of a message in a computer network
motivation ◮ hide initiator of a message in a computer network ◮ safe whistleblowing under corporate and state surveillance
motivation ◮ hide initiator of a message in a computer network ◮ safe whistleblowing under corporate and state surveillance ◮ ‘deniable communication’
motivation ◮ hide initiator of a message in a computer network ◮ safe whistleblowing under corporate and state surveillance ◮ ‘deniable communication’ ◮ decentralized
idea
idea node network participant link possible message path
idea node network participant link possible message path ◮ all nodes have equal weight
idea node network participant link possible message path ◮ all nodes have equal weight ◮ message unmodifiable, only receiver is known
idea node network participant link possible message path ◮ all nodes have equal weight ◮ message unmodifiable, only receiver is known ◮ each node on path: biased coin flip: forward or deliver
idea node network participant link possible message path ◮ all nodes have equal weight ◮ message unmodifiable, only receiver is known ◮ each node on path: biased coin flip: forward or deliver ◮ each node on path: initiator or just forwarder?
idea node network participant link possible message path ◮ all nodes have equal weight ◮ message unmodifiable, only receiver is known ◮ each node on path: biased coin flip: forward or deliver ◮ each node on path: initiator or just forwarder? → message initator gets lost in the crowd
model
model n 4 n 5 n 3 n 6 n 2 n 7 n 1 n 8 ◮ N nodes n 1 , . . . , n N with P ( n i is initiator) =: P ( X = n i ) =: p i
model n 4 n 5 n 3 n 6 n 2 n 7 n 1 n 8 ◮ N nodes n 1 , . . . , n N with P ( n i is initiator) =: P ( X = n i ) =: p i ◮ n i probably innocent ↔ p i ≤ 1 2
model n 4 n 5 n 3 n 6 n 2 n 7 n 1 n 8 ◮ N nodes n 1 , . . . , n N with P ( n i is initiator) =: P ( X = n i ) =: p i ◮ n i probably innocent ↔ p i ≤ 1 2 ◮ forwarding probability λ
model n 4 n 5 n 3 n 6 n 2 n 7 n 1 n 8 ◮ N nodes n 1 , . . . , n N with P ( n i is initiator) =: P ( X = n i ) =: p i ◮ n i probably innocent ↔ p i ≤ 1 2 ◮ forwarding probability λ if message received then flip biased coin P (heads) = λ if heads then forward to a uniformly chosen node else deliver to receiver end if end if
degree of anonymity
degree of anonymity best case X := X : ∀ i ∈ { 1 , . . . , N } : p i = 1 N
degree of anonymity best case X := X : ∀ i ∈ { 1 , . . . , N } : p i = 1 N N � H := H ( X ) = − p i · ln( p i ) = ln( N − C ) i =1
degree of anonymity best case X := X : ∀ i ∈ { 1 , . . . , N } : p i = 1 N N � H := H ( X ) = − p i · ln( p i ) = ln( N − C ) i =1 worst case X := X : ∀ i ∈ { 1 , . . . , N } \ { j } : p i = 0 ∧ p j = 1
degree of anonymity best case X := X : ∀ i ∈ { 1 , . . . , N } : p i = 1 N N � H := H ( X ) = − p i · ln( p i ) = ln( N − C ) i =1 worst case X := X : ∀ i ∈ { 1 , . . . , N } \ { j } : p i = 0 ∧ p j = 1 N � H := H ( X ) = − p i · ln( p i ) = 1 · ln(1) = 0 i =1
degree of anonymity best case X := X : ∀ i ∈ { 1 , . . . , N } : p i = 1 N N � H := H ( X ) = − p i · ln( p i ) = ln( N − C ) i =1 worst case X := X : ∀ i ∈ { 1 , . . . , N } \ { j } : p i = 0 ∧ p j = 1 N � H := H ( X ) = − p i · ln( p i ) = 1 · ln(1) = 0 i =1 d ( X ) := 1 − H − H ( X ) = H ( X ) ∈ [0 , 1] H H
corruption
corruption n 4 n 5 n 3 n 6 n 2 n 7 n 1 n 8 ◮ 0 ≤ C < N corrupt nodes (incoming message passer known)
corruption n 4 n 5 n 3 n 6 n 2 n 7 n 1 n 8 ◮ 0 ≤ C < N corrupt nodes (incoming message passer known) ◮ behave normally
corruption n 4 n 5 n 3 n 6 n 2 n 7 n 1 n 8 ◮ 0 ≤ C < N corrupt nodes (incoming message passer known) ◮ behave normally ◮ wait for message to be passed to us
corruption n 4 n 5 n 3 n 6 n 2 n 7 n 1 n 8 ◮ 0 ≤ C < N corrupt nodes (incoming message passer known) ◮ behave normally ◮ wait for message to be passed to us ◮ analyze probability of passer being initiator
corruption n 4 n 5 n 3 n 6 n 2 n 7 n 1 n 8 ◮ 0 ≤ C < N corrupt nodes (incoming message passer known) ◮ behave normally ◮ wait for message to be passed to us ◮ analyze probability of passer being initiator P (passer is initiator) > 1 2 → unmasked
analysis events
analysis events 4 n I n C 3 1 n n n m 2
analysis events 4 n I n C 3 1 n n n m 2 let k > 0
analysis events 4 n I n C 3 1 n n n m 2 let k > 0 H k := first corrupt node is at the k th path-position
analysis events 4 n I n C 3 1 n n n m 2 let k > 0 H k := first corrupt node is at the k th path-position ∞ � H k + := H i i = k
analysis events 4 n I n C 3 1 n n n m 2 let k > 0 H k := first corrupt node is at the k th path-position ∞ � H k + := H i i = k I := first corrupt node immediately postcedes the message initiator
analysis events 4 n I n C 3 1 n n n m 2 let k > 0 H k := first corrupt node is at the k th path-position ∞ � H k + := H i i = k I := first corrupt node immediately postcedes the message initiator P (passer is initiator) = P ( I | H 1+ )
analysis events 4 n I n C 3 1 n n n m 2 let k > 0 H k := first corrupt node is at the k th path-position ∞ � H k + := H i i = k I := first corrupt node immediately postcedes the message initiator P (passer is initiator) = P ( I | H 1+ ) note: H 1 → I , but I �→ H 1
analysis general probability I P ( I | H 1+ ) = N − λ ( N − C − 1) N
analysis general probability I P ( I | H 1+ ) = N − λ ( N − C − 1) N proof:
analysis general probability I P ( I | H 1+ ) = N − λ ( N − C − 1) N proof: � k − 1 � λ · N − C � λ · C � P ( H k ) = · N N
analysis general probability I P ( I | H 1+ ) = N − λ ( N − C − 1) N proof: � k − 1 � λ · N − C � λ · C � P ( H k ) = · N N � k � λ · N − C ∞ C · N � ⇒ P ( H k + ) = P ( H i ) = . . . = � � 1 − λ · N − C ( N − C ) · i = k N
analysis general probability I P ( I | H 1+ ) = N − λ ( N − C − 1) N proof: � k − 1 � λ · N − C � λ · C � P ( H k ) = · N N � k � λ · N − C ∞ C · N � ⇒ P ( H k + ) = P ( H i ) = . . . = � � 1 − λ · N − C ( N − C ) · i = k N H 1 → I ⇒ P ( I | H 1 ) = 1
analysis general probability I P ( I | H 1+ ) = N − λ ( N − C − 1) N proof: � k − 1 � λ · N − C � λ · C � P ( H k ) = · N N � k � λ · N − C ∞ C · N � ⇒ P ( H k + ) = P ( H i ) = . . . = � � 1 − λ · N − C ( N − C ) · i = k N H 1 → I ⇒ P ( I | H 1 ) = 1 1 P ( I | H 2+ ) = N − C
analysis general probability II P ( I ) TP = P ( H 1 ) P ( I | H 1 ) + P ( H 2+ ) P ( I | H 2+ )
analysis general probability II P ( I ) TP = P ( H 1 ) P ( I | H 1 ) + P ( H 2+ ) P ( I | H 2+ ) = . . .
analysis general probability II P ( I ) TP = P ( H 1 ) P ( I | H 1 ) + P ( H 2+ ) P ( I | H 2+ ) = . . . = λ · C � λ � · 1 + N − λ · ( N − C ) N
analysis general probability II P ( I ) TP = P ( H 1 ) P ( I | H 1 ) + P ( H 2+ ) P ( I | H 2+ ) = . . . = λ · C � λ � · 1 + N − λ · ( N − C ) N = P ( I ∧ H 1+ ) P ( I | H 1+ ) CP P ( H 1+ )
analysis general probability II P ( I ) TP = P ( H 1 ) P ( I | H 1 ) + P ( H 2+ ) P ( I | H 2+ ) = . . . = λ · C � λ � · 1 + N − λ · ( N − C ) N = P ( I ∧ H 1+ ) P ( I | H 1+ ) CP � I → H 1+ � P ( H 1+ ) P ( I ) = P ( H 1+ )
analysis general probability II P ( I ) TP = P ( H 1 ) P ( I | H 1 ) + P ( H 2+ ) P ( I | H 2+ ) = . . . = λ · C � λ � · 1 + N − λ · ( N − C ) N = P ( I ∧ H 1+ ) P ( I | H 1+ ) CP � I → H 1+ � P ( H 1+ ) P ( I ) = P ( H 1+ ) = . . .
analysis general probability II P ( I ) TP = P ( H 1 ) P ( I | H 1 ) + P ( H 2+ ) P ( I | H 2+ ) = . . . = λ · C � λ � · 1 + N − λ · ( N − C ) N = P ( I ∧ H 1+ ) P ( I | H 1+ ) CP � I → H 1+ � P ( H 1+ ) P ( I ) = P ( H 1+ ) = . . . = N − λ ( N − C − 1) N
analysis general probability II P ( I ) TP = P ( H 1 ) P ( I | H 1 ) + P ( H 2+ ) P ( I | H 2+ ) = . . . = λ · C � λ � · 1 + N − λ · ( N − C ) N = P ( I ∧ H 1+ ) P ( I | H 1+ ) CP � I → H 1+ � P ( H 1+ ) P ( I ) = P ( H 1+ ) = . . . = N − λ ( N − C − 1) N good node P (good node i is initiator) = 1 − P ( I | H 1+ ) = λ N < 1 N ≤ 1 N − C − 1 2
Recommend
More recommend