Announcement (No deadline extension for the rest of quarter) Project 2 final deadline is Tuesday midnight May 19 Project 0 resubmission for autograding : June 1 (changed) Project 0 score =max(old score, old score *0.10 + new score *0.90). Donot print “shell>” prompt. Project 3A (May 29). Harness code is released and will be updated. Optional Project 3B (June 4). -- You can use Project 3B to replace midterm OR one of project scores: Project 1, 2, 3A . 5/28/2015 1
Project 3A CS 170, Tao Yang
High-level Summary Objective: Virtual memory management for program execution when memory is not enough. vm directory for 3A is empty Need to come up a design and code you donot have to follow harness code Test C programs ~cs170/nachos-projtest/proj3a Amount of work ~300 lines or less of code in vm ( few changes in userprog) Simplification is allowed using Linux file I/O instead of Nachos file I/O in swap space management 5/28/2015 3
Test program that needs more than 32 pages #include "syscall.h" C program binary nachos – x binary char array[128*32]; main() { Project 2 VM char *str = "Hello world!\n"; code management array[0]=‘a’; Write(hello_str, strlen(str)+1, 1); } Execution result
Sawp in/swap out Disk Initially allocate 0 memory page to program B. Store B’s pages in swap space Bring a page into memory ONLY when it is needed
Sawp in/swap out Disk Swap Space 512 sectors (128B/sector) Directory Files Swap Space Manager get/put/free Virtual Memory Manager free page management replacement management swap-in/out
Example 1 Assume SWAP has 10 free sectors. Memory has 3 free pages. Program A’s virtual pages: 0, 1, 2,3 Use a random replacement policy Load binary of program A: Allocate 4 sectors in SWAP: 4, 5, 6,7. Copy virtual page content of A to sectors 4, 5, 6, 7 in SWAP Notice NO memory pages are allocated to program A. Execute program A and read code in virtual addr 0. Page fault need to fetch virtual page 0 of A Allocate one free memory page to virtual page 0. Allocate Frame #1 Load sector #4 from disk to Frame #1. Resume the instruction execution at virtual addr 0. 5/28/2015 7
Example 1 with 3-page memory and 10-sector SWAP Disk Memory frames SWAP with 10 sectors 0 4,5,6,7 used for Program A: 1 Vpage 0, 1, 2,3 2 Directory Page table A Files 0 Invalid Program A binary 1 Invalid 2 Invalid 3 Invalid Program A needs 4 virtual pages
Example 1 with 3-page memory and 10-sector SWAP Disk Memory frames SWAP with 10 sectors 0 4,5,6,7 used for Program A: 1 Vpage 0, 1, 2,3 2 Directory Page table A Files 0 1 Program A binary 1 Invalid 2 Invalid 3 Invalid Program A needs 4 virtual pages
Example 2 Assume SWAP has 6 free sectors left. Program A’s pages occupy Sectors #4,5,6,7. Memory is used by Program A’s virtual pages: 0, 1, 2 Occupy frames 1, 0, 2 Access virtual address of A in 3*128 +2: That is virtual page #3. Identify frame #0 as victim Copy out content of Frame #0 (virtual page #1 of A) to Sector #5 in SWAP Copy Sector #7 from SWAP to Frame #0. Set up page table entry for the victim address space and current address space properly. Resume the instruction execution to access virtual addr 3*128+2. 5/28/2015 10
Example 2: Program A needs Virtual Page 3 Disk Memory frames SWAP with 10 sectors 0 4,5,6,7 used for Program A: 1 Vpage 0, 1, 2,3 2 Directory Page table A Files 0 1 Program A binary 1 0 2 2 3 Invalid Frame #0 (for page #1 of A) is victim
Example 2 after virtual page 3 is loaded Disk Memory frames SWAP with 10 sectors Swap in 0 4,5,6,7 used for Program A: 1 Vpage 0, 1, 2,3 Swap out 2 Directory Page table A Files 0 1 Program A binary 1 invalid 2 2 3 0 Frame #0 (for page #1 of A) is victim
Example 3: Program B is loaded Disk Memory frames SWAP with 10 sectors 0 0, 1, 2 used for program B. 1 4,5,6,7 used for Program A 2 Directory Page table A Program B binary 0 1 Program A binary 1 invalid 2 2 3 0 Page table B Program B needs 3 virtual pages 0 invalid 1 invalid 2 invalid
Example 3 Assume Program B is loaded by Exec() Program B needs 3 pages. Allocate 3 free sectors in SWAP. Program B’s pages occupy Sectors #0, 1,2 Access virtual address 0 of B: That is virtual page #0 of B Identify Frame #2 as victim Copy out content of Frame #2 (virtual page #2 of A) to Sector #6 in SWAP Copy Sector #0 from SWAP to memory frame #2. Set up page table entry for the victim address space and current address space properly Resume the instruction execution to access virtual addr 0 of program B 5/28/2015 14
Example 3: after addr 0 of Program B is accessed Disk Memory frames SWAP with 10 sectors 0 0, 1, 2 used for program B. 1 4,5,6,7 used for Program A 2 Directory Page table A Program B binary 0 1 Program A binary 1 invalid 2 invalid 3 0 Page table B 0 2 1 invalid Frame #2 (for page #2 of A) 2 invalid is victim
How to access a sector in SWAP? Page size = sector size =128 bytes Access sector x Open the SWAP file Seek position: x*128 in the SWAP file Length 128. Functions to write/read sector content Use Nachos OpenFile’s ReadAt(), WriteAt() Or Linux file read/write. How to determine a sector is available? Use a bitmap. Or any method you want. 16
How to set up the initial content of virtual page? See Project 2 implementation/solution on how to set up n virtual pages of an address space (addrspace.cc) Read the binary from disk Set up code/data/stack etc. For project 3A, instead of allocating n memory frames for this address space Allocate n free disk sectors in SWAP Copy content of n virtual pages one by one to these sectors using Write(). If duplicating a child address space from a parent space, make sure you use the latest in-memory copy of parent pages if they have been modified (dirty). 17
Project 3A: Virtual Memory Work on vm subdirectory mainly + addrspace.cc/.h and exception.cc in userprog Create/manage a backing store (a file called SWAP using the OpenFile class). Implement a page fault handler with dirty bit handling and a page replacement policy (LRU or second chance) Test under various conditions: One process with an address space larger than physical memory. Concurrent processes with combined address space larger than physical memory. 5/28/2015 18
Report to be submitted P3A_WRITEUP Summarize what is completed, what is not. 1. describe the design of VM 2. Describe design options and their trade-offs. List/explain main components and code modification in implementing your design Summarize the test effort (what is passed, 3. the purpose of each test) 5/28/2015 19
Start with Sample Code Makefiles + harness code SWAP space manager (but Dani combines this manager with VM page manager) Used to maintain information about pages that are currently in swap space. Flag dirty pages. VM page manager Handle a page fault at particular address. Identify a victim page by LRU or second- chance code. Swap-out/swap-in 5/28/2015 20
Questions How many pages to allocate when handling Exec(binary) or Fork(function)? 0, proportionally, completely? If not, where are new or updated pages stored? When will a page fault exception be generated? Where to check if a page is not in memory? Find a physical page Who manages a set of memory pages used? How to find a free page (victim page)? When to actually do a swap out (write to disk)? Where to get page content from disk? 5/28/2015 21
Getting Started Read machine/translate.cc and machine.cc: In Machine:Translate() for virtual address Assembly code: read translation, PageFaultException is detected when data the desired page is not in memory. In Machine:ReadMem, Translate() is called for translating the desired virtual memory address and machine->RaiseException() is called with PageFaultException error. Translate Addr In Machine:RaiseException() registers[BadVAddrReg] stores bad address. Change to system mode. Call ExceptionHandler Page fault
What is next Read mipssim.cc Machine->ReadMem() is called in executing each instruction. If PageFaultException is detected, the exception handler should load the desired page. The hardware will try again. Need to expand exception.cc to handle PageFaultException. Once handled, return to user mode and restart the instruction caused the fault
User Instruction Execution Re-execute if Machine:Run () Exception is raised OneInstruction () ReadMem () WriteMem () Machine:Translate() Page writing? Set dirty bit Cannot find this page? Raise PageFaultException ExceptionHandler() Deal with PageFaultException
Files to be modified for Part A New files in directory vm Virtual memory manager Swap space manager Directory userprog (extension to Project 2) exception.cc Extension to handle PageFaultException Addrspace.cc/.h Prepare code/data for SWAP backstore. Virtual address translation -> paging if needed
Recommend
More recommend