ani aprahamian robustness of observational r process
play

Ani Aprahamian Robustness of observational r-process patterns - PowerPoint PPT Presentation

Ani Aprahamian Robustness of observational r-process patterns Uncertainties in astrophysical r-process sites What about the nuclear properties? r-process basic idea rprocess Z=50 Masses -decay rates N=82 n- capture


  1. Ani Aprahamian

  2. • Robustness of observational r-process patterns • Uncertainties in astrophysical r-process sites • What about the nuclear properties? r-process basic idea

  3. r‐process 
 Z=50 Masses β -decay rates N=82
 n- capture N=50


  4. Experimental & Theoretical Challenges

  5. How do you decide which nuclei to measure??? H.
Schatz
 r‐process 
 Z=50 N=82
 N=50


  6. Impact of 78 Ni half-life on r-process models

  7. Fragmentation of 120 MeV/u N=56 subshell with Z=34??? 136 Xe beam Quinn et al., Phys. Rev. C 85, 035807 (2012) 
 (a.u.)~Z 2 Δ E
 PIN0 
 90 Se
 ToF
 Im2‐N3 
 (a.u.)~Am 0 
 Implanta:ons

 
 
 
 
 
Maximum
Likelihood
Method
(ms)


  8. r-process sensitivities…masses More quantitative approach to choosing to measure nuclei that would have the greatest impact on What? Brad Meyer code modified by R. Surman various mass models - FRDM, Duflo-Zuker, ETFSIQ, HFB-21, F-spin Method: Adjusted the separation energy of each nucleus ± 25% (> 3000 nuclei twice…. ) Calculated the max and fractional change from final abundances What did we find? Some consistent set of nuclei that are the most important to measure

  9. So, What did we do? Input initial astrophysical conditions Temperature/density neutron/seed ratios Freeze-out times Input nuclear physics masses n-capture rates beta decay half-lives (fission recycling, alpha recycling, neutrino interactions off)

  10. Why 25%

  11. Neutron separation energy sensitivity study S. Brett, I. Bentley, N. Paul, A. Aprahamian Start with a baseline simulation (here, the H-event conditions from Qian et al were used) Vary one separation energy by 25% and rerun the simulation Repeat >6000 times (twice for each heavy nucleus in the network) plot by I. Bentley 
 � [ ] � Y S n ( Z i , A i ) ± 25% = Y baseline ( A ) � Y S n ( Z i , A i ) ± 25% ( A ) A R Surman, Union College/Notre Dame NSCL/MSU 30 Nov 11 


  12. Closed shell nuclei have small S n , enrichment around N=50, 82,126

  13. Input Parameters for the simulation were based on… Neutrino-less H-event from Qian et. al Descrip,on
 Value
 Seed
Nucleus
 86
 *Seed
Nucleus
 67
 0.0034
 1.5
 Freeze‐out
Time
 0.86s


  14. Evaluating the impact of the separation energy change Two approaches FRDM

  15. Neutron separation energy sensitivity study S. Brett, I. Bentley, N. Paul, A. Aprahamian [ ] � � Y S n ( Z i , A i ) ± 25% = Y baseline ( A ) � Y S n ( Z i , A i ) ± 25% ( A ) A

  16. The role of neutron separation energies in a hot r -process Y (50,138), abundance of 138 Sn Y (50,140), abundance of 140 Sn Y equilibrium (50,138) Y equilibrium (50,140) While in equilibrium, the relative abundances along an isotopic chain are given by a Saha equation: Y equilibrium ( Z , A + 1) = Y equilibrium ( Z , A ) 3/ 2 � � 2 � � 2 N A � � G ( Z , A + 1) exp S n ( Z , A + 1) 2 G ( Z , A ) n n � � � � m n kT � kT � � � R Surman, Union College/Notre Dame NSCL/MSU 30 Nov 11 


  17. Nucleus
 Nucleus
 Nucleus
 Nucleus
 136 Cd
 20.2
 140 Sn
 20.1
 80 Ni
 13.6
 136 Cd
 22.7
 140 Sn
 12.1
 136 Cd
 19.0
 79 Ni
 9.96
 137 Cd
 10.8
 135 Cd
 8.80
 142 Sn
 17.3
 138 Cd
 7.08
 138 Cd
 10.4
 83 Cu
 8.42
 137 Cd
 15.3
 137 Cd
 5.49
 135 Cd
 6.97
 139 Sn
 8.19
 79 Ni
 12.5
 83 Cu
 4.27
 140 Sn
 5.97
 142 Sb
 5.64
 80 Ni
 12.0
 131 Pd
 3.54
 130 Pd
 5.46
 135 Sn
 5.44
 135 Cd
 11.5
 82 Cu
 3.36
 83 Cu
 5.23
 133 Cd
 5.38
 134 Cd
 11.5
 132 Pd
 3.12
 142 Sn
 4.66
 140 Sb
 5.25
 138 Cd
 8.57
 136 Cd
 3.00
 134 Cd
 4.57
 134 Cd
 5.23
 132 Pd
 7.66
 130 Pd
 2.97
 141 Sn
 4.21
 82 Cu
 4.14
 130 Pd
 7.34
 86 Zn
 2.84
 86 Zn
 3.82
 134 In
 4.14
 132 In
 7.33
 129 Pd
 1.88
 133 Cd
 3.52
 131 Pd
 3.29
 129 Pd
 5.12
 85 Zn
 1.81
 132 Cd
 3.04
 137 Sn
 2.94
 139 Sn
 4.63
 134 Ag
 1.49
 137 Sn
 2.86
 141 Sn
 2.91
 131 Pd
 4.37
 142 Sn
 1.42
 82 Cu
 2.63
 83 Zn
 2.89
 138 In
 3.98
 135 Ag
 1.39
 138 In
 2.47
 85 Zn
 2.71
 139 In
 3.95
 135 Cd
 1.36
 139 In
 2.23
 85 Cu
 2.66
 86 Zn
 3.21
 133 Cd
 1.10
 129 Pd
 1.95
 130 Pd
 2.39
 141 Sn
 2.92
 141 Sn
 1.08
 131 Pd
 1.81
 132 Pd
 2.39
 85 Zn
 2.86
 144 Sn
 1.07
 131 Ag
 1.69


  18. r-process sensitivities…beta-decay rates J. Cass, G. Passucci, R. Surman, A. Aprahamian To start… Vary one beta decay rate by an order of magnitude , rerun the simulation, and compare the final abundance pattern to the baseline White to black = 0-10% change in the final abundance patterns R Surman, Union College/Notre Dame NSCL/MSU 30 Nov 11 


  19. Beta decay rate sensitivity study hot r-process cold r-process R Surman, Union College/Notre Dame NSCL/MSU 30 Nov 11 


  20. baseline 132 Cd � � ( Z , A ) � 10 � � ( Z , A ) ÷ 10 140 Sn

  21. 132 Cd 140 Sn

  22. Sensitivity Study Masses summary Samuel Brett Ian Bentley We have carried out the first quantitative/ Nancy Paul comprehensive sensitivity study of an r- Rebecca Surman process simulation to masses , beta decay A 2 rates , neutron capture cross sections. Sensitivity Study β -decay rates Julie Cass - we varied mass models Giuseppe Passucci - we varied decay rates Rebecca Surman - consistent set of nuclei that we A 2 should measure Ani
Aprahamian
 University
of
Notre
Dame


  23. COLLABORATORS (Experiment) Notre Dame MSU Mainz Mathew Quinn Jorge Pereira Stefan Hennrich Andreas Woehr Paul Mantica Karl-Ludwig Kratz Sergio Almaraz Hendrik Schatz Bernd Pfeiffer Boris Skorodumov Ana Becerril Ruben Kessler A 2 Thom Elliot Florian Schertz Alfredo Estrade Daniel Galaviz Univ.
of
Maryland
 Giuseppe Lorusso W.

Walters
 Milan Matos Fernando Montes

  24. Nuclear Structure sensitivities of the r-process

Recommend


More recommend