and edms energy frontier
play

and EDMs: Energy Frontier 0 Connections M.J. Ramsey-Musolf U Mass - PowerPoint PPT Presentation

and EDMs: Energy Frontier 0 Connections M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ DBD Topical Collaboration Meeting, February 2017 1 Goals For This Talk Provide some context for the heavy


  1. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Theory Challenge: matrix elements Mechanism: does light ν M + mechanism exchange dominate ? EFF = 2 m k e 2 i δ ∑ m ν U ek k − − e e − − e e O(1) for Λ ~ TeV 0 ν M χ − W − W u − e ˜ − ˜ u e u u How to calc effects reliably ? d d d How to disentangle H & L ? d 40

  2. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana LNV at the LHC Theory Challenge: matrix elements + mechanism EFF = 2 m k e 2 i δ ∑ m ν U ek k − − e e − − e e 0 ν M χ − W − W u − e ˜ − ˜ u e u u d d d LNV d 41

  3. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana General Classification: Helo et al, PRD 88.011901, 88.073011 42

  4. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana General Classification: Helo et al, PRD 88.011901, 88.073011 SUSY: R Parity-Violation d d e e ~ ~ Sfermion q , l ~ ~ ~ F V F ~ Gaugino g , χ Majorana u u 43

  5. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana General Classification: Helo et al, PRD 88.011901, 88.073011 SUSY: R Parity-Violation d d e e ~ ~ Sfermion q , l ~ ~ ~ F V F ~ Gaugino g , χ Majorana LNV u u 44

  6. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana General Classification: Helo et al, PRD 88.011901, 88.073011 SUSY: R Parity-Violation d d e e ~ ~ ~ F V F LNV u u 45

  7. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana General Classification: Helo et al, PRD 88.011901, 88.073011 SUSY: R Parity-Violation d d e e ~ ~ ~ F V F LNV u u 46

  8. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Other Models: Back Up Slides 47

  9. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana What can we learn from the LHC? 48

  10. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana LHC Production LHC: pp ! jj e - e - LHC: pp ! jjj e - e - 49

  11. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana LHC Production & 0 νββ -Decay 76 Ge τ (0 ν ) LHC exclusion Helo et al, PRD 88.011901, 88.073011 50

  12. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana d u Illustrative Simplified S + e − Model: LHC: pp ! jj e - e - F 0 e − variant form: S + d u Y -1/6 -1/3 1/2 1/2 0 -1/2 d u e − 0 νββ - decay D T = ( S + , S 0 ) e − d u 51

  13. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana variant form: Helo et al claim: Y -1/6 -1/3 1/2 1/2 0 -1/2 g eff ð S Þ ¼ ð g 1 g 2 Þ 1 = 2 : Fig. 11 C j = g j S m c Þ 1 = 5 ; M eff ð S Þ ¼ ð m 4 g 52 ;

  14. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana variant form: Helo et al claim: EXO exclusion Y -1/6 -1/3 1/2 1/2 0 -1/2 g eff ð S Þ ¼ ð g 1 g 2 Þ 1 = 2 : Future Xe: T 1/2 > 10 27 yr Fig. 11 C j = g j S m c Þ 1 = 5 ; M eff ð S Þ ¼ ð m 4 g 53 ;

  15. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana variant form: Helo et al claim: EXO exclusion Y -1/6 -1/3 1/2 1/2 0 -1/2 LHC: pp ! jj e - e - g eff ð S Þ ¼ ð g 1 g 2 Þ 1 = 2 : Future Xe: T 1/2 > 10 27 yr 300 fb -1 : < 3 events Fig. 11 C j = g j S m c Þ 1 = 5 ; M eff ð S Þ ¼ ð m 4 g 54 ;

  16. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana TeV Scale LNV d u Can it be discovered e − 0 νββ - decay with combination of e − νββ & LHC searches ? 0 νβ d u d u Simplified models S + e − LHC: pp ! jj e - e - F 0 e − S + 55 d u

  17. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana TeV Scale LNV d u Effective operators: e − 0 νββ - decay e − d u d u S + e − LHC: pp ! jj e - e - F 0 0 νββ -decay as fu g g e ff = C 1 ( Λ ) 1 / 4 e − S + 56 d u . We use a prospec

  18. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Our reanalysis: • Include backgrounds • Incorporate QCD running • Include long-distance contributions to nuclear matrix elements T. Peng, MJRM, P. Winslow, 1508.04444 57

  19. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: • Charge flip • Jet faking electron 58

  20. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: g e + e - Z • Charge flip e + • Jet faking electron e - g e + transfers most of p T to conversion e - ; Z / γ * + jets ! apparent e - e - jj event 59

  21. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: e + e - b W t g • Charge flip e + ν W • Jet faking electron ν t b e - e + transfers most of p T to conversion e - ; b’s not tagged ! apparent e - e - jj event 60 48

  22. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: Bin in η and apply charge flip prob 61

  23. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: Jet fakes 62

  24. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Cuts Backgrounds: • H T • MET • M ll 63

  25. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Cuts Backgrounds: 64

  26. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Low energy: Running 65

  27. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana QCD Running Low energy: 66

  28. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana QCD Running Low energy: 67

  29. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana QCD Running Low energy: Assuming C k = 1 at µ = 5 GeV ! Effective DBD amplitude for O 1 substantially weaker for given LHC constraints 68

  30. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Nuclear Matrix Elements: Long Range Effects Low energy: Exploit Chiral Symmetry & EFT ideas 69

  31. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Nuclear Matrix Elements: Long Range Effects Low energy: Our work Helo et al Exploit Chiral Symmetry & EFT ideas 70

  32. νββ -Decay: TeV Scale LNV 0 νβ Putting the pieces together 71

  33. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV 72 T. Peng, MRM, P. Winslow 1508.04444

  34. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV e − e − Present Tonne scale F S S ( ) ( ) A Z , N A Z − 2, N + 2 73 T. Peng, MRM, P. Winslow 1508.04444 16

  35. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV e − e − Present Tonne scale F S S Nuc & had matrix elements ( ) ( ) A Z , N A Z − 2, N + 2 74 T. Peng, MRM, P. Winslow 1508.04444 16

  36. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV e − e − Present Tonne scale F LHC: ee jj S S ( ) ( ) A Z , N A Z − 2, N + 2 75 T. Peng, MRM, P. Winslow 1508.04444 16

  37. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV e − e − Present Tonne scale F ~2018 S S >2024 ( ) ( ) A Z , N A Z − 2, N + 2 76 T. Peng, MRM, P. Winslow 1508.04444 16

  38. νββ -Decay: TeV Scale LNV & m ν 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Implications for m ν : Controls m ν Schecter-Valle: non-vanishing Simplified model: possible Majorana mass at (multi) loop level (larger) one loop Majorana mass 77

  39. νββ -Decay: TeV Scale LNV & m ν 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Implications for m ν : Ton Scale Signal m ν (loop) 78 A hypothetical scenario

  40. νββ / LHC Interplay: Matrix Elements 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV e − e − F S S Assume GERDA present limit & different Nuc/Had MEs ( ) ( ) A Z , N A Z − 2, N + 2 79 T. Peng, MRM, P. Winslow 1508.04444 16

  41. V. EDMs & the LHC: Higgs Portal CPV 80

  42. EDMs & SM Physics d n ~ (10 -16 e cm) x θ QCD + d n CKM 81

  43. EDMs & SM Physics d n ~ (10 -16 e cm) x θ QCD + d n CKM d n CKM = (1 – 6) x 10 -32 e cm C. Seng arXiv: 1411.1476 82

  44. EDMs & BSM Physics d ~ (10 -16 e cm) x ( υ / Λ ) 2 x sin φ x y f F 83

  45. EDMs & BSM Physics d ~ (10 -16 e cm) x ( υ / Λ ) 2 x sin φ x y f F CPV Phase: large enough for baryogenesis ? 84

  46. EDMs & BSM Physics d ~ (10 -16 e cm) x ( υ / Λ ) 2 x sin φ x y f F BSM mass scale: TeV ? Much higher ? 85

  47. EDMs & BSM Physics d ~ (10 -16 e cm) x ( υ / Λ ) 2 x sin φ x y f F BSM dynamics: perturbative? Strongly coupled? 86

  48. EDMs & BSM Physics d ~ (10 -16 e cm) x ( υ / Λ ) 2 x sin φ x y f F BSM dynamics: perturbative? Strongly coupled? Hadronic & atomic systems: reliable SM calc’s? 87

  49. EDMs & BSM Physics d ~ (10 -16 e cm) x ( υ / Λ ) 2 x sin φ x y f F Need information from at least three “frontiers” 88

  50. EDMs & BSM Physics d ~ (10 -16 e cm) x ( υ / Λ ) 2 x sin φ x y f F Need information from at least three “frontiers” • Baryon asymmetry Cosmic Frontier • High energy collisions Energy Frontier • EDMs Intensity Frontier 89

  51. EDM/LHC Complementarity 90

  52. The Higgs Portal 91

  53. Inoue, R-M, Zhang: Higgs Portal CPV 1403.4257 CPV & 2HDM: Type I & II λ 6,7 = 0 for simplicity 2 φ 1 ) + 1 = λ 1 1 φ 1 ) 2 + λ 2 2 φ 2 ) 2 + λ 3 ( φ † h 1 φ 2 ) 2 + h . c . i 2 ( φ † 2 ( φ † 1 φ 1 )( φ † 2 φ 2 ) + λ 4 ( φ † 1 φ 2 )( φ † λ 5 ( φ † V 2 − 1 n h i o 11 ( φ † 12 ( φ † 22 ( φ † m 2 m 2 + m 2 1 φ 1 ) + 1 φ 2 ) + h . c . 2 φ 2 ) . 2 � � EWSB � λ 5 v 1 v 2 5 ( m 2 12 ) 2 ⇤ ⇥ 1 � δ 1 = Arg λ ⇤ , � � m 2 � 12 δ 2 ⇡ δ 1 � � 5 ( m 2 ⇥ ⇤ λ ⇤ 12 ) v 1 v ⇤ δ 2 = Arg � λ 5 v 1 v 2 1 � 2 � � 2 m 2 � 12 γ H 0 /H + W ± H ⌥ f f � f 92

  54. Future Reach: Higgs Portal CPV CPV & 2HDM: Type II illustration λ 6,7 = 0 for simplicity Hg ThO n Ra Present Future: Future: d n x 0.1 d n x 0.01 d A (Hg) x 0.1 d A (Hg) x 0.1 d ThO x 0.1 d ThO x 0.1 sin α b : CPV d A (Ra) d A (Ra) [10 -27 e cm] scalar mixing 93 Inoue, R-M, Zhang: 1403.4257

  55. Higgs Portal CPV: EDMs & LHC CPV & 2HDM: Type II illustration λ 6,7 = 0 for simplicity Hg ThO n LHC Current Ra M h2 = 400 GeV Dawson et al: 1503.01114 Present Future: Future: d n x 0.1 d n x 0.01 d A (Hg) x 0.1 d A (Hg) x 0.1 d ThO x 0.1 d ThO x 0.1 sin α b : CPV d A (Ra) [10 -27 e cm] d A (Ra) scalar mixing 94 Inoue, R-M, Zhang: 1403.4257

  56. Higgs Portal CPV: EDMs & LHC CPV & 2HDM: Type II illustration λ 6,7 = 0 for simplicity Hg ThO n LHC Future ? Ra M h2 = 400 GeV Dawson et al: 1503.01114 Present Future: Future: d n x 0.1 d n x 0.01 d A (Hg) x 0.1 d A (Hg) x 0.1 d ThO x 0.1 d ThO x 0.1 sin α b : CPV d A (Ra) d A (Ra) [10 -27 e cm] scalar mixing 95 Inoue, R-M, Zhang: 1403.4257

  57. Higgs Portal CPV: EDMs & LHC CPV & 2HDM: Type II illustration λ 6,7 = 0 for simplicity Current d n LHC 100 fb -1 Hg LHC 300 fb -1 ThO Run II n Ra Chen, Li, RM preliminary M h2 = 550 GeV Present Future: Future: d n x 0.1 d n x 0.01 d A (Hg) x 0.1 d A (Hg) x 0.1 d ThO x 0.1 d ThO x 0.1 sin α b : CPV d A (Ra) d A (Ra) [10 -27 e cm] scalar mixing 96 Inoue, R-M, Zhang: 1403.4257

  58. Low-Energy / High-Energy Interplay Higgs Portal CPV Discovery “Diagnostic” ? Low energy High energy 97

  59. Hadronic & Nuclear Matrix Elements 98

  60. Hadronic Matrix Elements Engel, R-M, 99 van Kolck ‘ 13

  61. Hadronic Matrix Elements (CEDM) Engel, R-M, 100 van Kolck ‘ 13

Recommend


More recommend