An overview of Lidar and Sunphotometric measurements of aerosol optical properties over Thessaloniki, Greece V. Amiridis (1,2) , A. Bais (2) , D. Balis (2) , E. Giannakaki (2) , S. Kazadzis (2) , A. Papayannis (3) , C. Zerefos (4) (1) Institute for Space Applications and Remote Sensing, National Observatory of Athens, Greece (2) Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece (3) Physics Department, National Technical University of Athens, Athens, Greece (4) Laboratory of Climatology, University of Athens, Athens, Greece
Outline � Instrumentation � 5-year aerosol climatology � Case Studies – Optical Characteristics of specific aerosol types (smoke – dust) � Ground-based input for satellite inversions – Calipso � Aerosol microphysical properties – the next step � Conclusions
Instrumentation: Raman/Backscatter Lidar
Instrumentation: Raman/Backscatter Lidar
Instrumentation: Sunphotometers
NETWORKS: AERONET
NETWORKS: EARLINET
Kazadzis et al. ACP, Kazadzis et al. ACP, 2007 2007 Aerosol Climatology
Kazadzis et al. ACP, Kazadzis et al. ACP, 2007 2007 Aerosol Climatology
Aerosol Climatology 15-days gliding average 1.0 FT Aerosol Optical Depth 355nm 0.8 0.6 0.4 0.2 0.0 1.0 PBL Aerosol Optical Depth 0.8 0.6 0.4 0.2 0.0 0 50 100 150 200 250 300 350 Julian Day Amiridis et al. , JGR, Amiridis et al. , JGR, 2005 2005
Aerosol Climatology exponential fit Elterman's profile 10000 355nm 9000 Exponential Fit E = a*exp(-H/b) 8000 a = 0.0004 ± 0.0001 b = 1802.0 ± 386.21 7000 6000 Height (m) 5000 4000 3000 2000 1000 0 -4 -4 -6 0.0 0.0 0 40 80 120 2.0x10 4.0x10 6.0x10 -1 ) -1 sr -1 ) Extinction Coefficient (m Lidar Ratio (sr) Backscatter Coefficient (m Amiridis et al. , JGR, Amiridis et al. , JGR, 2005 2005
Aerosol Climatology AOD = Mean columnar aerosol optical depth @ 355nm AOD1 = Mean PBL aerosol optical depth @ 355nm AOD2 = Mean FT aerosol optical depth @ 355nm cluster 3 (7%) AOD = 0.53 0.24 AOD1 = 0.37 0.17 AOD2 = 0.16 0.09 cluster 5 (30%) AOD = 0.72 0.33 cluster 6 (27%) AOD1 = 0.49 0.19 AOD = 0.59 0.20 AOD2 = 0.23 0.18 cluster 2 (24%) AOD1 = 0.44 0.17 AOD = 0.51 0.15 AOD2 = 0.15 0.09 AOD1 = 0.39 0.12 AOD2 = 0.12 0.06 cluster 4 (6%) AOD = 0.97 0.07 AOD1 = 0.60 0.08 AOD2 = 0.37 0.09 cluster 1 (6%) AOD = 0.71 0.41 AOD1 = 0.40 0.26 AOD2 = 0.31 0.16 Amiridis et al. , JGR, Amiridis et al. , JGR, 2005 2005
Aerosol Climatology LR = Mean columnar aerosol optical depth @ 355nm LR1 = Mean PBL aerosol optical depth @ 355nm LR2 = Mean FT aerosol optical depth @ 355nm cluster 3 (7%) LR = 38.4 19.6 LR1 = 39.8 21.6 LR2 = 37.9 19.1 cluster 5 (30%) LR = 46.6 25.5 cluster 6 (27%) LR1 = 55.7 27.4 LR = 33.9 15.1 LR2 = 43.6 24.6 cluster 2 (24%) LR1 = 37.1 17.4 LR = 28.8 10.5 LR2 = 31.8 12.7 LR1 = 28.4 10.5 LR2 = 28.2 10.4 cluster 4 (6%) LR = 40.0 16.2 LR1 = 37.6 25.1 LR2 = 40.1 16.1 cluster 1 (6%) LR = 58.3 29.8 LR1 = 71.8 33.9 LR2 = 57.1 28.7 Amiridis et al. , JGR, Amiridis et al. , JGR, 2005 2005
Case Studies – Biomass Burning Clusters #1 North West (Atlantic) #2 North 0.8 #3 West THESSALONIKI, GREECE 1997-2006 #4 East, North-East #5 Western, Local and Saharan dust Mean AEROSOL OPTICAL DEPTH at 340 nm Mean AOD 0.6 0.4 0.2 0.0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Months
Case Studies – Biomass Burning forest agriculture wetlands grasslands Latitude (degrees) other Thessaloniki Longitude (degrees)
Case Studies – Biomass Burning 4000 0 0 Latitude range: 40 -60 2001 3500 0 0 2002 Longitude range: 50 -70 Number of Hot Spots (ATSR) 2003 2004 3000 2005 2500 2000 1500 1000 500 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Month
Case Studies – Biomass Burning 01 August 2005 Biomass burning event at Russia MODIS fire product
Case Studies – Biomass Burning 01 August 2005 Balis et al. , Atm. Env., Balis et al. , Atm. Env., Biomass burning event at Russia 2003 2003 4-day Back Trajectories + ATSR hot spots
Case Studies – Biomass Burning 6000 5000 4000 Height, asl [m] 3000 2000 1000 0 0.0 0.2 0.4 0.6 0 2 4 6 0 2 4 6 0 40 80 120 0 2 4 Extnction Coefficient Backscatter Coefficient Backscatter Coefficient Lidar Ratio Color Index -1 ] -1 sr -1 ] -1 sr -1 ] @ 355 nm [km @ 355 nm [km @ 532 nm [km @ 355 nm[sr] 355/532 nm 01 August 2005 Biomass burning event from Russia Lidar derived profiles
Case Studies – Biomass Burning
Case Studies – Biomass Burning
Case Studies – Biomass Burning 12 SEP 2005 01 AUG 2005 28 JUL 2005 22 AUG 2002 08 JUL 2002 20 AUG 2001 16 AUG 2001 09 AUG 2001 16 JUL 2001 12 JUL 2001 7 7 7 7 7 355 nm 355 nm 532 nm 355 nm b355 nm - b532 nm 6 6 6 6 6 5 5 5 5 5 4 4 4 4 4 HEIGHT [km] 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 0 0 0 0 0 0 200 400 600 800 0 3 6 9 12 0 1 2 3 4 5 0 30 60 90 120 0 1 2 3 4 -1 sr -1 ] -1 sr -1 ] -1 sr -1 ] EXT. COEF. [Mm BSC. COEF. [Mm BSC. COEF. [Mm LIDAR RATIO [sr] ANGSTRÖM EXP.
Case Studies – Biomass Burning 3.5 Correlation Coefficient = -0.84 Bsc. Angstrom Exp. [355 / 532 nm] 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 10 20 30 40 50 60 70 80 90 100 110 120 Lidar Ratio @ 355 nm (sr)
Case Studies – Biomass Burning
Case Studies – Biomass Burning Thessaloniki, 20/08/2001 10000 9000 8000 7000 Height (m) 6000 5000 4000 3000 2000 1000 0 0 2 4 6 8 10 12 14 16 18 20 CO Mixing Ratio (ppb) Age (days)
Case Studies – Biomass Burning 3.5 Correlation Coefficient = -0.85 Bsc. Angstrom Exp. [355 / 532 nm] 3.0 2.5 2.0 1.5 1.0 0.5 0.0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Age of Carbon Monoxide from fire emissions [days]
Case Studies – Saharan Dust
Case Studies – Saharan Dust 5000 355 nm 355 nm 355 nm 532 nm 4000 700 hPa 3000 Height (m) 2000 850 hPa 1000 Boundary Layer 975 hPa 0 -6 -6 -4 -4 0.0 0 20 40 60 80 100 120 4.0x10 8.0x10 2.0x10 4.0x10 -1 sr -1 ) -1 ) Backscatter (m Extinction (m Lidar Ratio (sr)
Case Studies – Saharan Dust 120 110 correlation coefficient = -0.80834 100 90 Lidar Ratio @ 355nm (sr) 80 70 60 50 40 30 20 10 region 1 region 2 region 3 0 -2 -1 0 1 2 3 4 5 Color Index (355/532nm) Balis et al. , GRL, 2004 Balis et al. , GRL, 2004
Case Studies – Saharan Dust
Case Studies – Saharan Dust 2 Mean dust load [g/m ] Spring Winter Latitude (degrees) Latitude (degrees) 45N 1.2 0.9 35N 0.7 0.5 0.3 25N 0.1 0.05 15N 20W 0 20E 40E Longitude (degrees) Longitude (degrees) Summer Autumn Latitude (degrees) Latitude (degrees) Longitude (degrees) Longitude (degrees)
Case Studies – Saharan Dust W est E ast EARLINET lidar stations in the lk NW N European continent. Special points kb hh mi ab le indicate the location of the station. be mu NE W pl C gp Circles denote the corresponding ne ju la geographical sector. sf S W ba na th po lc at S S E 40 Mean number of observed dust days 35 Seasonal variability of the 30 observed mean number of Total 25 Saharan dust days during Winter 20 Spring EARLINET (May 2000- Summer 15 December 2005) per sector Fall 10 over the European 5 continent. 0 N NE Central W SW S SE Geographical sector
Case Studies – Saharan Dust 240 220 Observed 200 Forecasted 180 Number of dust days 160 140 120 100 80 60 40 20 0 AT LC TH PO NA BA LA SF JU NEGPMU PL LE BE AB HH MI KB LK EARLINET Station Papayannis et al. , JGR, Papayannis et al. , JGR, 2008 2008
Case Studies – Saharan Dust 0.6 0.5 Mean Aerosol Optical Depth 0.4 Mean AOD (upper graph) and 0.3 mean LR (lower graph) together 0.2 with the corresponding standard deviation, calculated inside the 0.1 dust layers, per EARLINET 0.0 PO(1550) NA(1570) LA(1590) LC(1650) AT(1800) TH(1900) LE(2450) KB(2550) station equipped with a Raman EARLINET Station lidar system as a function of 100 90 distance from the Saharan region 80 (the numbers in parenthesis Mean Lidar Ratio (sr) 70 indicate the distance in km of the 60 50 station from the Saharan region). 40 30 20 Papayannis et al. , JGR, Papayannis et al. , JGR, 10 0 2008 2008 PO(1550) NA(1570) LA(1590) LC(1650) AT(1800) TH(1900) LE(2450) KB(2550) EARLINET Station
Case Studies – Saharan Dust Raman nighttime measurements at 351/355nm 7000 AT (15) KB (6) 6000 LA (27) LC (45) LE (11) 5000 NA (53) PO (38) TH (6) Height a.s.l. (m) 4000 3000 2000 1000 0 -4 4.0x10 -6 1.0x10 0.0 -4 0.0 -5 0 20 40 60 80 100 0 20 40 60 80 100 2.0x10 5.0x10 Extinction Backscatter Lidar Ratio Lidar Ratio (sr) -1 ) -1 sr -1 ) Standard Deviation (sr) Coefficient (m Coefficient (m Papayannis et al. , JGR, Papayannis et al. , JGR, 2008 2008
Aerosol Microphysical Properties- The next step Aeronet Inversions: Typical size distribution for anthropogenic urban aerosols
Aerosol Microphysical Properties- The next step Aeronet Inversions: Typical size distribution for Saharan dust
Recommend
More recommend