an orc with ethanol
play

AN ORC WITH ETHANOL ASME ORC 2015 3 rd International Seminar on ORC - PowerPoint PPT Presentation

STUDY OF A VOLUMETRIC EXPANDER SUITABLE FOR WASTE HEAT RECOVERY FROM AN AUTOMOTIVE IC ENGINE USING AN ORC WITH ETHANOL ASME ORC 2015 3 rd International Seminar on ORC Power Systems 12-14 October 2015, Brussels, Belgium Vicente Dolz Ruiz


  1. STUDY OF A VOLUMETRIC EXPANDER SUITABLE FOR WASTE HEAT RECOVERY FROM AN AUTOMOTIVE IC ENGINE USING AN ORC WITH ETHANOL ASME ORC 2015 3 rd International Seminar on ORC Power Systems 12-14 October 2015, Brussels, Belgium Vicente Dolz Ruiz Vicente Dolz Ruiz 1 vidolrui@mot.upv.es vidolrui@mot.upv.es

  2. ORC facility. Mock up • ORC facility boiler • Stationary conditions • Experimental • Modelled IC engine • Dynamic conditions • Experimental Exhaust gas • Conclusions T Temp. sensor Pres. sensor FS FS Flow sensor T T brake P P Ethanol Evaporator expander T P T T P T Expander Brake T Expander Electric vessel Pump motor & expander freq. var. vessel FS T Tank T P pump Condenser P T P T T FS Cooling water Vicente Dolz Ruiz 2 vidolrui@mot.upv.es

  3. ORC facility. Expander • ORC facility • Stationary conditions • Experimental • Modelled • Dynamic conditions • Experimental • Conclusions Swash-plate characteristics Working fluid ethanol Pistons working 3 Bore 40 mm Stroke 31 mm Maximum expander speed 4500 rpm Vicente Dolz Ruiz 3 vidolrui@mot.upv.es

  4. ORC facility. Working points Ford Explorer • ORC facility • Stationary conditions 2 liter turbocharged gasoline engine • Experimental • Modelled • Dynamic conditions • Experimental • Conclusions Point Point 84km/h 114km/h Vehicle speed (km/h) 84 114 Engine speed (rpm) 2000 2700 Fuel power (kW) 69.6 119.1 Engine power output 22.2 38.5 (kW) Inlet temperature of the 526 646 exhaust gas (°C) Mass flow exhaust gas 24 41 (g/s) Vicente Dolz Ruiz 4 vidolrui@mot.upv.es

  5. Stationary conditions. Experimental results • ORC facility • Stationary conditions • Experimental Point 114km/h (25 kW heat power) • Modelled • Dynamic conditions • Experimental • Conclusions ICE mechanical mechanical power (32%) power (1.4%) exhaust ethanol ethanol gasses (19%) (17%) (30%) exhaust Exhaust fuel power ICE Evaporator Expander Condenser gasses (31%) line (100%) ethanol (0.16%) exhaust gasses (10%) heat losses (1.16%) heat losses (0.6%) cooling water (16.9%) water (37%) Pump cooling electric pump heat losses (1%) power (0.16%) ethanol (0.1%) heat losses (0.1%) Ambient conditions 25 ºC and 1 bar Vicente Dolz Ruiz 5 vidolrui@mot.upv.es

  6. Stationary conditions. Model • ORC facility • Stationary conditions • Experimental • Modelled • Dynamic conditions • Experimental • Conclusions Vicente Dolz Ruiz 6 vidolrui@mot.upv.es

  7. Stationary conditions. Model • ORC facility • Stationary conditions • Experimental • Modelled • Dynamic conditions • Experimental • Conclusions Vicente Dolz Ruiz 7 vidolrui@mot.upv.es

  8. Stationary conditions. Model validation • ORC facility Point 114km/h (25 kW heat power) • Stationary conditions • Experimental • Modelled 2000 rpm 3000 rpm • Dynamic conditions • Experimental • Conclusions Vicente Dolz Ruiz 8 vidolrui@mot.upv.es

  9. Stationary conditions. Model validation • ORC facility Point 114km/h (25 kW heat power) • Stationary conditions • Experimental • Modelled • Dynamic conditions • Experimental • Conclusions Vicente Dolz Ruiz 9 vidolrui@mot.upv.es

  10. Dynamic conditions. Control • ORC facility • Stationary conditions Pump speed • Experimental PID 1 ṁ ET frequency • Modelled Kp=cte • Dynamic conditions Ki=cte • Experimental Stationary • Conclusions maps ṁET_sp T EG ṁET_sp_st ΔṁET_sp_tr P EG SUM ṁ EG TET_B_out_sp_st Adaptive control TET_B_out for transient conditions Expander speed Vicente Dolz Ruiz 10 vidolrui@mot.upv.es

  11. Dynamic conditions Test 84 km/h - 114 km/h in 5 sec Vicente Dolz Ruiz 11 vidolrui@mot.upv.es

  12. Dynamic conditions Test 84 km/h - 114 km/h in 5 sec Vicente Dolz Ruiz 12 vidolrui@mot.upv.es

  13. Dynamic conditions. Test NEDC • ORC facility NEDC Ecoboost Explorer • Stationary conditions 140 35 • Experimental • Modelled • Dynamic conditions 120 30 Vehicle speed (km/h) • Experimental • Conclusions Power Boil EG Power Boil ET 100 25 Speed (km/h) Power (kW) 80 20 vapor conditions 60 15 begins at boiler outlet 40 10 20 5 0 0 0 200 400 600 800 1000 1200 1400 Time (s) Vicente Dolz Ruiz 13 vidolrui@mot.upv.es

  14. Dynamic conditions. Test NEDC extra urban • ORC facility NEDC Extra-Urban • Stationary conditions 160 800 • Experimental Vehicle speed (km/h) • Modelled • Dynamic conditions 140 700 Exhaust gas mass flow (kg/h) • Experimental Power expander (W) • Conclusions 120 600 Exhaust gas mass flow (kg/h) Vehicle speed (km/h) Expander power (W) 100 500 80 400 60 300 40 200 20 100 0 0 Time (s) 0 50 100 150 200 Vicente Dolz Ruiz 14 vidolrui@mot.upv.es

  15. Conclusions • ORC facility • Stationary conditions • Currently, a realistic estimation of the increase of IC engine • Experimental efficiency due to the use of ORC systems can be close to 2% . If • Modelled • Dynamic conditions evaporator efficiency and expander efficiency are improved • Experimental this value could reach to 4.5% , as some theoretical studies • Conclusions predict. • Despite being a multivariable system, the ORC may be controlled in transient conditions typical of an IC engine by using a simple control system with PIDs uncoupled and some open-loop controls . • These ORC systems are more efficient on extra-urban conditions (vehicle speeds higher than 50 km/h approx). On the other hand, on urban driving conditions (speeds below 50km/h), these systems have not enough power to start the cycle. Vicente Dolz Ruiz 15 vidolrui@mot.upv.es

  16. Thanks for your attention Vicente Dolz Ruiz 16 vidolrui@mot.upv.es

Recommend


More recommend