An Interlacing Approach for Bounding the Sum of Laplacian Eigenvalues of Graphs Aida Abiad Tilburg University joint work with M.A. Fiol, W.H. Haemers and G. Perarnau
Introduction Laplacian matrix A generalization of Grone’s result Eigenvalue interlacing Some applications Two cases of interlacing A variation of Grone-Merris’s result 1 − 1 0 0 − 1 3 − 1 − 1 L = 0 − 1 1 0 0 − 1 0 1 spectrum: { 4 1 , 1 2 , 0 1 } Aida Abiad
Introduction Laplacian matrix A generalization of Grone’s result Eigenvalue interlacing Some applications Two cases of interlacing A variation of Grone-Merris’s result m < n λ 1 ≥ λ 2 ≥ · · · ≥ λ n µ 1 ≥ µ 2 ≥ · · · ≥ µ m Aida Abiad
Introduction Laplacian matrix A generalization of Grone’s result Eigenvalue interlacing Some applications Two cases of interlacing A variation of Grone-Merris’s result m < n λ 1 ≥ λ 2 ≥ · · · ≥ λ n µ 1 ≥ µ 2 ≥ · · · ≥ µ m Interlacing: λ i ≥ µ i ≥ λ n − m + i 1 ≤ i ≤ m Aida Abiad
Introduction Laplacian matrix A generalization of Grone’s result Eigenvalue interlacing Some applications Two cases of interlacing A variation of Grone-Merris’s result m < n λ 1 ≥ λ 2 ≥ · · · ≥ λ n µ 1 ≥ µ 2 ≥ · · · ≥ µ m Interlacing: λ i ≥ µ i ≥ λ n − m + i 1 ≤ i ≤ m Aida Abiad
Introduction Laplacian matrix A generalization of Grone’s result Eigenvalue interlacing Some applications Two cases of interlacing A variation of Grone-Merris’s result m < n λ 1 ≥ λ 2 ≥ · · · ≥ λ n µ 1 ≥ µ 2 ≥ · · · ≥ µ m Interlacing: λ i ≥ µ i ≥ λ n − m + i 1 ≤ i ≤ m λ 1 , λ 2 , · · · , λ n eigenvalues of a matrix A µ 1 , µ 2 , · · · , µ m eigenvalues of a matrix B Aida Abiad
Introduction Laplacian matrix A generalization of Grone’s result Eigenvalue interlacing Some applications Two cases of interlacing A variation of Grone-Merris’s result B is a principal submatrix of A . 1 Aida Abiad
Introduction Laplacian matrix A generalization of Grone’s result Eigenvalue interlacing Some applications Two cases of interlacing A variation of Grone-Merris’s result B is a principal submatrix of A . 1 If P = { U 1 , . . . , U m } is a partition of { 1 , . . . , n } we can take for B 2 the so-called quotient matrix of A with respect to P . Aida Abiad
Introduction Laplacian matrix A generalization of Grone’s result Eigenvalue interlacing Some applications Two cases of interlacing A variation of Grone-Merris’s result [Schur 1923] Let G be a graph with vertex degrees d 1 ≥ d 2 ≥ · · · ≥ d n , and Laplacian matrix L with eigenvalues λ 1 ≥ λ 2 ≥ · · · ≥ λ n (= 0 ) . Then, m m � � λ i ≥ d i i = 1 i = 1 Aida Abiad
Introduction Laplacian matrix A generalization of Grone’s result Eigenvalue interlacing Some applications Two cases of interlacing A variation of Grone-Merris’s result [Schur 1923] Let G be a graph with vertex degrees d 1 ≥ d 2 ≥ · · · ≥ d n , and Laplacian matrix L with eigenvalues λ 1 ≥ λ 2 ≥ · · · ≥ λ n (= 0 ) . Then, m m � � λ i ≥ d i i = 1 i = 1 Proof: 1 Let B be a principal m × m submatrix of L indexed by the subindexes corresponding to the m largest degrees, with eigenvalues µ 1 ≥ µ 2 ≥ · · · ≥ µ m . Then, m m � � µ i = tr B = d i , i = 1 i = 1 and, by interlacing, µ i ≤ λ i . Aida Abiad
Introduction Laplacian matrix A generalization of Grone’s result Eigenvalue interlacing Some applications Two cases of interlacing A variation of Grone-Merris’s result Aida Abiad
Introduction Laplacian matrix A generalization of Grone’s result Eigenvalue interlacing Some applications Two cases of interlacing A variation of Grone-Merris’s result Aida Abiad
Introduction Laplacian matrix A generalization of Grone’s result Eigenvalue interlacing Some applications Two cases of interlacing A variation of Grone-Merris’s result Aida Abiad
Introduction Laplacian matrix A generalization of Grone’s result Eigenvalue interlacing Some applications Two cases of interlacing A variation of Grone-Merris’s result The isoperimetric number i of G is defined as � � i ( G ) = min | ∂ ( U , U ) | / | U | : 0 < | U | ≤ n / 2 . U ⊂ V [Mohar 1989] Let G be a graph with Laplacian eigenvalues λ 1 ≥ λ 2 ≥ · · · ≥ λ n (= 0 ) and isoperimetric number i ( G ) . Then, i ( G ) ≥ λ n − 1 / 2 . Aida Abiad
Introduction Laplacian matrix A generalization of Grone’s result Eigenvalue interlacing Some applications Two cases of interlacing A variation of Grone-Merris’s result [Mohar 1989] Let G be a graph with Laplacian eigenvalues λ 1 ≥ λ 2 ≥ · · · ≥ λ n (= 0 ) and isoperimetric number i . Then, i ( G ) ≥ λ n − 1 / 2 . Proof: 2 Set m = 2 and take a partition { V 1 = U , V 2 = U } . Then, | ∂ ( U , U ) | − | ∂ ( U , U ) | | U | | U | B = − | ∂ ( U , U ) | | ∂ ( U , U ) | n −| U | n −| U | spectrum B : µ 1 ≥ µ 2 = 0 and µ 1 = trace B = | ∂ ( U , U ) | | U | ( 1 + n −| U | ) | U | By interlacing, λ 1 ≥ µ 1 ≥ λ n − 2 + 1 = λ n − 1 . So λ n − 1 ≤ | ∂ ( U , U ) | n ( n −| U | ) . | U | 2 , we have λ n − 1 ≤ 2 | ∂ ( U , U ) | For | U | ≤ n ≤ 2 i ( G ) . | U | Aida Abiad
Introduction A generalization of Grone’s result Some applications A variation of Grone-Merris’s result [Grone 1995] For a connected graph and 0 < m < n , then m m � � λ i ≥ d i + 1 . i = 1 i = 1 [Theorem] Let G be a connected graph on n = | V | vertices, having Laplacian matrix L with eigenvalues λ 1 ≥ λ 2 ≥ · · · ≥ λ n (= 0 ) . Let U be the vertex subset which contains the m largest degrees, with 0 < m < n . Then, m m � � λ i ≥ d i . i = 1 i = 1 Aida Abiad
Introduction A generalization of Grone’s result Some applications A variation of Grone-Merris’s result [Grone 1995] For a connected graph and 0 < m < n , then m m � � λ i ≥ d i + 1 . i = 1 i = 1 [Theorem] Let G be a connected graph on n = | V | vertices, having Laplacian matrix L with eigenvalues λ 1 ≥ λ 2 ≥ · · · ≥ λ n (= 0 ) . Let U be the vertex subset which contains the m largest degrees, with 0 < m < n . Then, m m d i + | ∂ ( U , U ) | � � λ i ≥ n − m . i = 1 i = 1 Aida Abiad
Introduction A generalization of Grone’s result Some applications A variation of Grone-Merris’s result Proof: Let U ⊆ V be the set containing the m vertices with 2 largest degree. Aida Abiad
Introduction A generalization of Grone’s result Some applications A variation of Grone-Merris’s result Proof: Let U ⊆ V be the set containing the m vertices with 2 largest degree. B has row sum 0, so µ m + 1 = λ n = 0 m m + 1 m � � � µ i = µ i = tr B = d i + b m + 1 , m + 1 i = 1 i = 1 i = 1 b m + 1 , m + 1 = | ∂ ( U , U ) | n − m Aida Abiad
Introduction A generalization of Grone’s result Some applications A variation of Grone-Merris’s result Proof: Let U ⊆ V be the set containing the m vertices with 2 largest degree. B has row sum 0, so µ m + 1 = λ n = 0 m m + 1 m � � � µ i = µ i = tr B = d i + b m + 1 , m + 1 i = 1 i = 1 i = 1 b m + 1 , m + 1 = | ∂ ( U , U ) | n − m Interlacing µ i ≤ λ i and add for i = 1 , 2 , . . . , m Aida Abiad
Introduction A generalization of Grone’s result Some applications A variation of Grone-Merris’s result Example of equality: The graph join of the complete graph K p with the empty graph K q , n = p + q . Aida Abiad
Introduction A generalization of Grone’s result Some applications A variation of Grone-Merris’s result Example of equality: The graph join of the complete graph K p with the empty graph K q , n = p + q . Aida Abiad
Introduction A generalization of Grone’s result Some applications A variation of Grone-Merris’s result Example of equality: The graph join of the complete graph K p with the empty graph K q , n = p + q . Laplacian spectrum: { n p , p q − 1 , 0 1 } degree sequence: { ( n − 1 ) p , p q } Aida Abiad
Introduction A generalization of Grone’s result Some applications A variation of Grone-Merris’s result Example of equality: The graph join of the complete graph K p with the empty graph K q , n = p + q . Laplacian spectrum: { n p , p q − 1 , 0 1 } degree sequence: { ( n − 1 ) p , p q } U = { v 1 , . . . , v m } b m + 1 , m + 1 = m m m � � d i + b m + 1 , m + 1 = m ( n − 1 ) + m = mn = λ i . i = 1 i = 1 Aida Abiad
Introduction A generalization of Grone’s result Some applications A variation of Grone-Merris’s result If U � = ∂ U and we delete the vertices (and corresponding edges) of U \ ∂ U , [Theorem] For a connected graph and 0 < m < n , then m m d i + | ∂ ( U , U ) | � � λ i ≥ . | ∂ U | i = 1 i = 1 Since | ∂ ( U , U ) | ≥ 1, our result implies Grone’s theorem. | ∂ U | Aida Abiad
Introduction A generalization of Grone’s result Some applications A variation of Grone-Merris’s result Idea: bounding | ∂ ( U , U ) | or optimizing b = | ∂ ( U , U ) | / ( n − m ) Aida Abiad
Recommend
More recommend