an algebraic framework for
play

An Algebraic Framework for Pseudorandom Functions and Applications - PowerPoint PPT Presentation

An Algebraic Framework for Pseudorandom Functions and Applications to Related-Key Security Michel Abdalla, Fabrice Benhamouda, Alain Passelgue Pseudorandom functions [GGM86] - efficiently computable function : -


  1. An Algebraic Framework for Pseudorandom Functions and Applications to Related-Key Security Michel Abdalla, Fabrice Benhamouda, Alain Passelègue

  2. Pseudorandom functions [GGM86] - efficiently computable function 𝐺: 𝐿 Γ— 𝐸 β†’ 𝑆 - indistinguishable from a random function 𝑔: 𝐸 β†’ 𝑆 𝑏 ∈ 𝐿 𝑦 𝑦 β‰ˆ 𝑑 𝐺 𝑔 𝐺(𝑏, 𝑦) 𝑔(𝑦) 1/22

  3. Number-theoretic PRF [NR97] DDH-based (Naor-Reingold) PRF π‘œ Γ— 0,1 π‘œ β†’ 𝔿 𝑂𝑆: β„€ π‘ž 𝑦𝑗 π‘œ 𝑕 𝑗=1 𝑏 𝑗 𝑏 , 𝑦 ↦ 2/22

  4. Number-theoretic PRF [NR97] DDH-based (Naor-Reingold) PRF π‘œ Γ— 0,1 π‘œ β†’ 𝔿 𝑂𝑆: β„€ π‘ž 𝑦 𝑗 π‘œ 𝑗=1 𝑏 , 𝑦 ↦ 𝑏 𝑗 2/22

  5. Number-theoretic PRF [NR97] DDH-based (Naor-Reingold) PRF π‘œ Γ— 0,1 π‘œ β†’ 𝔿 𝑂𝑆: β„€ π‘ž 𝑦 𝑗 with 𝑄 π‘œ π‘œ = 𝑗=1 𝑏 , 𝑦 ↦ 𝑄 𝑦 ( 𝑏) 𝑦 π‘ˆ 1 , … , π‘ˆ π‘ˆ 𝑗 2/22

  6. Number-theoretic PRF [NR97] DDH-based (Naor-Reingold) PRF π‘œ Γ— 0,1 π‘œ β†’ 𝔿 𝑂𝑆: β„€ π‘ž 𝑦 𝑗 with 𝑄 π‘œ π‘œ = 𝑗=1 𝑏 , 𝑦 ↦ 𝑄 𝑦 ( 𝑏) 𝑦 π‘ˆ 1 , … , π‘ˆ π‘ˆ 𝑗 fact 1: 𝑦 π‘¦βˆˆ 0,1 π‘œ linearly independent π‘œ -variate polynomials 𝑄 fact 2: other constructions with the same form (𝐢𝑁𝑆, 𝑀𝑋, … ) 2/22

  7. Main question π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 ? 𝑦 π‘¦βˆˆπΈ linearly independent π‘œ -variate polynomials over β„€ π‘ž 𝑄 3/22

  8. Main question π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 ? 𝑦 π‘¦βˆˆπΈ linearly independent π‘œ -variate polynomials over β„€ π‘ž 𝑄 (standard assumption?) 3/22

  9. Outline - motivation for such an equivalence and proof - applications to (RKA) PRF - new algebraic framework for related-key security 4/22

  10. Motivation 1 π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 ∈ 𝔿 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials 𝑄 5/22

  11. Motivation 1 π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 ∈ 𝔿 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials 𝑄 toy example: π‘œ Γ— 0,1 π‘œ ↦ 𝑗=1 𝑦 𝑗 ∈ 𝔿 is a PRF π‘œ 𝑂𝑆: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑏 𝑗 proof: 𝑦 ∈ 0,1 π‘œ are linearly independent 𝑦 𝑗 π‘œ { 𝑗=1 π‘ˆ 𝑗 5/22

  12. Motivation 2 Def: Ξ¦ -RKA-PRF [BK03] - Ξ¦ βŠ† πΊπ‘£π‘œ(𝐿, 𝐿) a class of functions - efficiently computable function 𝐺: 𝐿 Γ— 𝐸 β†’ 𝑆 - indistinguishable from a random function 𝑔: 𝐿 Γ— 𝐸 β†’ 𝑆 𝑏 ∈ 𝐿 𝑏 ∈ 𝐿 𝝔, 𝑦 𝝔, 𝑦 β‰ˆ 𝑑 𝐺 𝑔 𝐺(𝝔 𝒃 , 𝑦) 𝑔(𝝔 𝒃 , 𝑦) 6/22

  13. Motivation 2 Def: Ξ¦ -RKA-PRF [BK03] - Ξ¦ βŠ† πΊπ‘£π‘œ(𝐿, 𝐿) a class of functions - efficiently computable function 𝐺: 𝐿 Γ— 𝐸 β†’ 𝑆 - indistinguishable from a random function 𝑔: 𝐿 Γ— 𝐸 β†’ 𝑆 𝑏 ∈ 𝐿 𝑏 ∈ 𝐿 𝝔, 𝑦 𝝔, 𝑦 β‰ˆ 𝑑 𝐺 𝑔 𝐺(𝝔 𝒃 , 𝑦) 𝑔(𝝔 𝒃 , 𝑦) [BK03]: impossibility results for certain classes 6/22

  14. Motivation 2 Def: Ξ¦ -RKA-PRF [BK03] - Ξ¦ βŠ† πΊπ‘£π‘œ(𝐿, 𝐿) a class of functions - efficiently computable function 𝐺: 𝐿 Γ— 𝐸 β†’ 𝑆 - indistinguishable from a random function 𝑔: 𝐿 Γ— 𝐸 β†’ 𝑆 𝑏 ∈ 𝐿 𝑏 ∈ 𝐿 𝝔, 𝑦 𝝔, 𝑦 β‰ˆ 𝑑 𝐺 𝑔 𝐺(𝝔 𝒃 , 𝑦) 𝑔(𝝔 𝒃 , 𝑦) [BK03]: impossibility results for certain classes goal: Ξ¦ -RKA-security for largest possible classes 6/22

  15. π‘œ Γ— 𝐸 ↦ 𝑄 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 ∈ 𝔿 π‘œ contains only π‘œ -variate polynomials Ξ¦ βŠ† β„€ π‘ž π‘ˆ 1 , … , π‘ˆ 7/22

  16. π‘œ Γ— 𝐸 ↦ 𝑄 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 ∈ 𝔿 π‘œ contains only π‘œ -variate polynomials Ξ¦ βŠ† β„€ π‘ž π‘ˆ 1 , … , π‘ˆ then 𝐺 𝜚 𝑏 , 𝑦 = 𝑄 𝑦 𝜚 𝑏 = 𝑄 𝑦 ∘ 𝜚 𝑏 7/22

  17. π‘œ Γ— 𝐸 ↦ 𝑄 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 ∈ 𝔿 π‘œ contains only π‘œ -variate polynomials Ξ¦ βŠ† β„€ π‘ž π‘ˆ 1 , … , π‘ˆ then 𝐺 𝜚 𝑏 , 𝑦 = 𝑄 𝑦 𝜚 𝑏 = 𝑄 𝑦 ∘ 𝜚 𝑏 π‘œ 𝑏 ∈ β„€ π‘ž π‘œ 𝑏 ∈ β„€ π‘ž 𝜚, 𝑦 𝜚, 𝑦 β‰ˆ 𝑑 𝐺 𝑔 𝑄 𝑦 ∘ 𝜚 𝑏 $ 7/22

  18. π‘œ Γ— 𝐸 ↦ 𝑄 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 ∈ 𝔿 π‘œ contains only π‘œ -variate polynomials Ξ¦ βŠ† β„€ π‘ž π‘ˆ 1 , … , π‘ˆ then 𝐺 𝜚 𝑏 , 𝑦 = 𝑄 𝑦 𝜚 𝑏 = 𝑄 𝑦 ∘ 𝜚 𝑏 π‘œ 𝑏 ∈ β„€ π‘ž π‘œ 𝑏 ∈ β„€ π‘ž 𝜚, 𝑦 𝜚, 𝑦 β‰ˆ 𝑑 𝐺 𝑔 𝑄 𝑦 ∘ 𝜚 𝑏 $ lin. ind. π‘œ -variate polynomials 𝑄 𝑦 ∘ 𝜚 π‘¦βˆˆπΈ 𝜚∈Φ 7/22

  19. Summary of our (RKA) PRF results PRFs: simple proofs for 𝑂𝑆, 𝐢𝑁𝑆, 𝑀𝑋, π‘™π‘€π‘—π‘œ and their extensions 𝒃 𝒋 ↦ 𝒃 𝝉(𝒋) 𝒃 𝒋 ↦ 𝑸(𝒃 𝝉(𝒋) ) 𝚾 𝒃 𝒋 ↦ 𝒃 𝒋 + 𝒄 𝒋 𝒃 𝒋 ↦ 𝒃 𝒋 βˆ— 𝒄 𝒋 𝒃 𝒋 ↦ 𝑸(𝒃 𝒋 ) [BC10] 𝑂𝑆 βˆ— 𝑂𝑆 βˆ— , 𝑀𝑋 ? ? ? (exp. time) [ABPP14] 𝑂𝑆 βˆ— 𝑂𝑆 βˆ— 𝑂𝑆 βˆ— ? ? this paper 𝑂𝑆, 𝑂𝑆 βˆ— , 𝑂𝑆, 𝑂𝑆 βˆ— , 𝑂𝑆, 𝑂𝑆 βˆ— , 𝑂𝑆 π‘šπ‘—π‘œ , 𝑂𝑆 π‘šπ‘—π‘œ 𝑀𝑋, π‘™π‘€π‘—π‘œ, … 𝑀𝑋, π‘™π‘€π‘—π‘œ, … 𝑀𝑋, π‘™π‘€π‘—π‘œ, … 𝐢𝑁𝑆 8/22

  20. 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials over β„€ π‘ž 𝑄 ? π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 9/22

  21. 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials over β„€ π‘ž 𝑄 ? π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 10/22

  22. 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials over β„€ π‘ž 𝑄 ? π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 assume 𝑄 𝑦 0 = πœ‡ 1 𝑄 𝑦 1 + … + πœ‡ π‘Ÿ 𝑄 𝑦 π‘Ÿ 10/22

  23. 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials over β„€ π‘ž 𝑄 π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 assume 𝑄 𝑦 0 = πœ‡ 1 𝑄 𝑦 1 + … + πœ‡ π‘Ÿ 𝑄 𝑦 π‘Ÿ π‘œ 𝑏 ∈ β„€ π‘ž 𝑦 0 , 𝑦 1 , … , 𝑦 π‘Ÿ 𝑦 0 , 𝑦 1 , … , 𝑦 π‘Ÿ ≉ 𝑑 𝐺 𝑔 𝑔 𝑦 0 , … , 𝑔(𝑦 π‘Ÿ ) [𝑄 𝑦 0 ( 𝑏)], … , [𝑄 𝑦 π‘Ÿ ( 𝑏)] πœ‡ π‘Ÿ 𝑔 𝑦 0 β‰  𝑔 𝑦 1 πœ‡ 1 β‹… … β‹… 𝑔 𝑦 π‘Ÿ 𝑄 𝑦 0 ( 𝑏) = πœ‡ 1 𝑄 𝑦 1 𝑏 + … + πœ‡ π‘Ÿ 𝑄 𝑦 π‘Ÿ 𝑏 πœ‡ π‘Ÿ πœ‡ 1 β‹… … β‹… 𝑄 = 𝑄 𝑦 1 𝑏 𝑦 π‘Ÿ 𝑏 10/22

  24. 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials over β„€ π‘ž 𝑄 ? π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 11/22

  25. 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials over β„€ π‘ž 𝑄 ? π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 π‘œ 𝑏 ∈ β„€ π‘ž 𝑄 𝑄 Real Rand [𝑄( 𝑏)] $ where the polynomials queried are lin. ind. 11/22

  26. 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials over β„€ π‘ž 𝑄 π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 thm: linearly independent polynomial (lip) security π‘œ 𝑏 ∈ β„€ π‘ž standard assumption 𝑄 𝑄 β‰ˆ 𝑑 Real Rand [𝑄( 𝑏)] $ where the polynomials queried are lin. ind. 11/22

  27. This talk thm: linearly independent polynomial (lip) security π‘œ 𝑏 ∈ β„€ π‘ž DDH 𝑄 𝑄 β‰ˆ 𝑑 Real Rand [𝑄( 𝑏)] $ where the polynomials queried are lin. ind. + multilinear 12/22

  28. simple case: - π‘œ = 3 𝑦 3 | 𝑦 ∈ 0,1 3 } 𝑦 1 π‘ˆ 𝑦 2 π‘ˆ - only monomials queried: 𝑄 ∈ {π‘ˆ 1 2 3 οƒž computation of 𝑄 as a path through a binary tree 𝑏 13/22

  29. simple case: - π‘œ = 3 𝑦 3 | 𝑦 ∈ 0,1 3 } 𝑦 1 π‘ˆ 𝑦 2 π‘ˆ - only monomials queried: 𝑄 ∈ {π‘ˆ 1 2 3 οƒž computation of 𝑄 as a path through a binary tree 𝑏 [1] 13/22

  30. simple case: - π‘œ = 3 𝑦 3 | 𝑦 ∈ 0,1 3 } 𝑦 1 π‘ˆ 𝑦 2 π‘ˆ - only monomials queried: 𝑄 ∈ {π‘ˆ 1 2 3 οƒž computation of 𝑄 as a path through a binary tree 𝑏 [1] [1] [𝑏 1 ] 13/22

  31. simple case: - π‘œ = 3 𝑦 3 | 𝑦 ∈ 0,1 3 } 𝑦 1 π‘ˆ 𝑦 2 π‘ˆ - only monomials queried: 𝑄 ∈ {π‘ˆ 1 2 3 οƒž computation of 𝑄 as a path through a binary tree 𝑏 [1] [1] [𝑏 1 ] [1] 𝑏 2 [𝑏 1 ] 𝑏 1 𝑏 2 13/22

  32. simple case: - π‘œ = 3 𝑦 3 | 𝑦 ∈ 0,1 3 } 𝑦 1 π‘ˆ 𝑦 2 π‘ˆ - only monomials queried: 𝑄 ∈ {π‘ˆ 1 2 3 οƒž computation of 𝑄 as a path through a binary tree 𝑏 [1] [1] [𝑏 1 ] [1] 𝑏 2 [𝑏 1 ] 𝑏 1 𝑏 2 [1] [𝑏 3 ] [𝑏 2 ] [𝑏 2 𝑏 3 ] [𝑏 1 ] [𝑏 1 𝑏 3 ] [𝑏 1 𝑏 2 ] [𝑏 1 𝑏 2 𝑏 3 ] 13/22

  33. simple case: - π‘œ = 3 𝑦 3 | 𝑦 ∈ 0,1 3 } 𝑦 1 π‘ˆ 𝑦 2 π‘ˆ - only monomials queried: 𝑄 ∈ {π‘ˆ 1 2 3 οƒž computation of 𝑄 as a path through a binary tree 𝑏 [1] [1] [𝑏 1 ] [1] 𝑏 2 [𝑏 1 ] 𝑏 1 𝑏 2 [1] [𝑏 3 ] [𝑏 2 ] [𝑏 2 𝑏 3 ] [𝑏 1 ] [𝑏 1 𝑏 3 ] [𝑏 1 𝑏 2 ] [𝑏 1 𝑏 2 𝑏 3 ] π‘ˆ 1 π‘ˆ 3 13/22

Recommend


More recommend