almost optimal distribution free junta testing
play

Almost Optimal Distribution-free Junta Testing Nader H. Bshouty - PowerPoint PPT Presentation

Almost Optimal Distribution-free Junta Testing Nader H. Bshouty Technion -Junta A Boolean function : 0,1 {0,1} is called junta if it depends on at most variables/coordinates. Examples: 1 , 2 , ,


  1. Almost Optimal Distribution-free Junta Testing Nader H. Bshouty Technion

  2. 𝑙 -Junta A Boolean function 𝑔: 0,1 π‘œ β†’ {0,1} is called 𝑙 βˆ’ junta if it depends on at most 𝑙 variables/coordinates. Examples: 𝑔 𝑦 1 , 𝑦 2 , … , 𝑦 10000 = 𝑦 1111 ∧ 𝑦 9992 βŠ• 𝑦 3001 is 3 - junta Relevant variables/coordinates is 4-junta 1-junta is {𝑦 𝑗 , ΰ΄₯ 𝑦 𝑗 , 0,1} 0-junta is {0,1} 𝑙 βˆ’ Junta is the class of all 𝑙 βˆ’ juntas.

  3. Model of Testing Given a black box that contains a Boolean function 𝑔: 0,1 π‘œ β†’ {0,1} Given two oracles: 1) when 𝑦 ∈ 0,1 π‘œ is queried, it returns 𝑔(𝑦) and 2) returns 𝑣 ∈ 0,1 π‘œ chosen acc. to unknown distribution 𝒠 A distribution-free testing algorithm 𝐡 for 𝑙 βˆ’ Junta is an algorithm that, given an access to the two oracles and a distance parameter πœ— as an input , 1) if 𝑔 is 𝑙 -junta then 𝐡 outputs β€œ accept ” with probability at least 2/3. 2) if 𝑔 is πœ— -far from every 𝑙 -junta with respect to the distribution 𝒠 then 𝐡 outputs β€œ reject ” with probability at least 2/3. βˆ€ β„Ž ∈ 𝑙 βˆ’ πΎπ‘£π‘œπ‘’π‘ 𝑦~𝒠 𝑔 𝑦 β‰  β„Ž 𝑦 Pr β‰₯ πœ—

  4. Model of Testing 𝑔 𝑙 -Junta 𝑙 -Junta 𝐡 outputs β€œ accept ” with probability at least 2/3.

  5. Model of Testing 𝑔 𝑙 -Junta 𝑙 -Junta 𝐡 outputs β€œ reject ” with probability at least 2/3.

  6. Model of Testing 𝑙 -Junta 𝑙 -Junta 𝑔 𝐡 halts and outputs either β€œ accept ” or β€œ reject ” .

  7. Results in the uniform distribution Model Result ΰ·© 𝑷/ΰ·© 𝛁 Reference Ada./NonAda Lo./Up. Lower bounds Adaptive Upper bounds NonAdaptive For the number of queries ΰ·¨ 𝑃 π‘ˆ = π‘ˆ π‘žπ‘π‘šπ‘§(log π‘ˆ) ΰ·© Ξ© π‘ˆ = π‘ˆ /π‘žπ‘π‘šπ‘§(log π‘ˆ) 1 Time π‘žπ‘π‘šπ‘§ π‘œ, πœ—

  8. Results in the uniform distribution Model Result ΰ·© 𝑷/ΰ·© 𝛁 Reference Ada./NonAda Lo./Up. 𝑙/πœ— Blais STOC 2009 Adaptive Upper

  9. Results in the uniform distribution Model Result ΰ·© 𝑷/ΰ·© 𝛁 Reference Ada./NonAda Lo./Up. 𝑙/πœ— Blais STOC 2009 Adaptive Upper 𝑙 Saglam FOCS 2018 Adaptive Lower

  10. Results in the uniform distribution Model Result ΰ·© 𝑷/ΰ·© 𝛁 Reference Ada./NonAda Lo./Up. 𝑙/πœ— Blais STOC 2009 Adaptive Upper 𝑙 Saglam FOCS 2018 Adaptive Lower 3 Blais APPROX 2008 NonAdaptive Upper 𝑙 2 /πœ—

  11. Results in the uniform distribution Model Result ΰ·© 𝑷/ΰ·© 𝛁 Reference Ada./NonAda Lo./Up. 𝑙/πœ— Blais STOC 2009 Adaptive Upper 𝑙 Saglam FOCS 2018 Adaptive Lower 3 Blais APPROX 2008 NonAdaptive Upper 𝑙 2 /πœ— 3 Chen et al. CCC 2017 NonAdaptive Lower 𝑙 2 /πœ—

  12. Results in the distribution-free model Result ΰ·© 𝑷/ΰ·© 𝛁 Reference Ada./NonAda Lo./Up.

  13. Results in the distribution-free model Result ΰ·© 𝑷/ΰ·© 𝛁 Reference Ada./NonAda Lo./Up. 2 𝑙 /πœ— Halevy et al. APPROX 03 NonAdaptive Upper

  14. Results in the distribution-free model Result ΰ·© 𝑷/ΰ·© 𝛁 Reference Ada./NonAda Lo./Up. 2 𝑙 /πœ— Halevy et al. APPROX 03 NonAdaptive Upper 2 𝑙/3 Chen et al. STOC 2018 NonAdaptive Lower

  15. Results in the distribution-free model Result ΰ·© 𝑷/ΰ·© 𝛁 Reference Ada./NonAda Lo./Up. 2 𝑙 /πœ— Halevy et al. APPROX 03 NonAdaptive Upper 2 𝑙/3 Chen et al. STOC 2018 NonAdaptive Lower 𝑙 2 /πœ— Chen et al. STOC 2018 Adaptive Upper

  16. Results in the distribution-free model Result ΰ·© 𝑷/ΰ·© 𝛁 Reference Ada./NonAda Lo./Up. 2 𝑙 /πœ— Halevy et al. APPROX 03 NonAdaptive Upper 2 𝑙/3 Chen et al. STOC 2018 NonAdaptive Lower 𝑙 2 /πœ— Chen et al. STOC 2018 Adaptive Upper 𝑙 Saglam FOCS 2018 Adaptive Lower

  17. Results in the distribution-free model Result ΰ·© 𝑷/ΰ·© 𝛁 Reference Ada./NonAda Lo./Up. 2 𝑙 /πœ— Halevy et al. APPROX 03 NonAdaptive Upper 2 𝑙/3 Chen et al. STOC 2018 NonAdaptive Lower 𝑙 2 /πœ— Chen et al. STOC 2018 Adaptive Upper 𝑙 Saglam FOCS 2018 Adaptive Lower 𝑙/πœ— Ours Adaptive Upper

  18. The algorithm 𝑔(𝑦 1 , … , 𝑦 π‘œ ) Choose a random uniform partition π‘Œ 1 , π‘Œ 2 , … , π‘Œ 𝑠 of π‘œ where 𝑠 = 2𝑙 2 𝑔(𝑦 π‘Œ 1 ∘ 𝑦 π‘Œ 2 ∘ β‹― ∘ 𝑦 π‘Œ 𝑠 ) Why 2𝑙 2 ? If 𝑔 is k βˆ’ junta, whp each π‘Œ 𝑗 contains at most one relevant coordinate Find relevant sets Find relevant sets π‘Œ 𝑗 1 , π‘Œ 𝑗 2 , … , π‘Œ 𝑗 𝑙′ 𝑔 𝑀 β‰  𝑔 𝑀 π‘Œ 𝑗 ∘ 0 π‘Œ 𝑗 π‘Œ 𝑗 1 , π‘Œ 𝑗 2 , … , π‘Œ 𝑗 π‘˜ π‘Œ = π‘Œ 𝑗 1 βˆͺ π‘Œ 𝑗 2 βˆͺ β‹― βˆͺ π‘Œ 𝑗 π‘˜ 𝑔 𝑣 π‘Œ ∘ 0 ΰ΄€ π‘Œ ? = 𝑔(𝑣) 𝑣~𝒠

  19. Find relevant sets Find relevant sets π‘Œ 𝑗 1 , π‘Œ 𝑗 2 , … , π‘Œ 𝑗 𝑙′ π‘Œ 𝑗 1 , π‘Œ 𝑗 2 , … , π‘Œ 𝑗 π‘˜ π‘Œ = π‘Œ 𝑗 1 βˆͺ π‘Œ 𝑗 2 βˆͺ β‹― βˆͺ π‘Œ 𝑗 π‘˜ 𝑔 𝑣 π‘Œ ∘ 0 ΰ΄€ π‘Œ ? = 𝑔(𝑣) 𝑣~𝒠 𝑔 𝑣 π‘Œ ∘ 0 ΰ΄€ π‘Œ β‰  𝑔(𝑣) Find a new relevant set π‘Œ 𝑗 π‘˜+1 = π‘Œ β„“ 𝑔 𝑣 π‘Œ ∘ 𝑣 𝑍 1 ∘ 0 𝑍 2 ΰ΄€ π‘Œ = 𝑍 1 βˆͺ 𝑍 2

  20. Find relevant sets Find relevant sets π‘Œ 𝑗 1 , π‘Œ 𝑗 2 , … , π‘Œ 𝑗 𝑙′ π‘Œ 𝑗 1 , π‘Œ 𝑗 2 , … , π‘Œ 𝑗 π‘˜ π‘Œ = π‘Œ 𝑗 1 βˆͺ π‘Œ 𝑗 2 βˆͺ β‹― βˆͺ π‘Œ 𝑗 π‘˜ 𝑔 𝑣 π‘Œ ∘ 0 ΰ΄€ π‘Œ ? = 𝑔(𝑣) 𝑣~𝒠 𝑔 𝑣 π‘Œ ∘ 0 ΰ΄€ π‘Œ β‰  𝑔(𝑣) log 𝑠 = 𝑃 log 𝑙 Find a new relevant sets π‘Œ 𝑗 π‘˜+1 = π‘Œ β„“ If this is the (𝑙 + 1) -th relevant set then β€œ reject ’’ We also get a witness for π‘Œ β„“ β„“ ∘ 0 π‘Œ β„“ 𝑔 𝑀 (β„“) β‰  𝑔 𝑀 π‘Œ β„“ 1 For ΰ·¨ 𝑔 𝑣 π‘Œ ∘ 0 ΰ΄€ π‘Œ = 𝑔(𝑣) 𝑃 πœ— values of 𝑣~𝒠 𝑙 ΰ·¨ 𝑃 πœ— queries 𝑦~𝒠 𝑔 𝑦 π‘Œ ∘ 0 ΰ΄€ Pr π‘Œ β‰  𝑔 𝑦 ≀ πœ—/3

  21. The algorithm π‘Œ 𝑗 1 , π‘Œ 𝑗 2 , … , π‘Œ 𝑗 𝑙′ , 𝑙 β€² ≀ 𝑙 Each π‘Œ 𝑗 π‘˜ contains at least one relevant variable ≀ πœ— π‘Œ = π‘Œ 𝑗 1 βˆͺ π‘Œ 𝑗 2 βˆͺ β‹― βˆͺ π‘Œ 𝑗 𝑙′ 𝑦~𝒠 𝑔 𝑦 π‘Œ ∘ 0 ΰ΄€ Pr π‘Œ β‰  𝑔 𝑦 3 πœ— β„Ž ≔ 𝑔(𝑦 π‘Œ ∘ 0 ΰ΄€ π‘Œ ) is 3 βˆ’ close to 𝑔 with respect to 𝒠 𝑔 𝑔 β„Ž: = 𝑔(𝑦 π‘Œ ∘ 0 ΰ΄€ π‘Œ ) 𝑙 -Junta 𝑙 -Junta β„Ž: = 𝑔(𝑦 π‘Œ ∘ 0 ΰ΄€ π‘Œ )

  22. π‘Œ 𝑗 1 , π‘Œ 𝑗 2 , … , π‘Œ 𝑗 𝑙′ , 𝑙 β€² ≀ 𝑙 Each π‘Œ 𝑗 π‘˜ contains at least one relevant coordinte π‘Œ = π‘Œ 𝑗 1 βˆͺ π‘Œ 𝑗 2 βˆͺ β‹― βˆͺ π‘Œ 𝑗 𝑙′ 𝑔(𝑦) is πœ— βˆ’ far from every 𝑙 βˆ’ Junta with 𝑔 is 𝑙 βˆ’ junta 𝑙 ΰ·¨ 𝑃 πœ— queries respect to 𝒠 β„Ž: = 𝑔(𝑦 π‘Œ ∘ 0 ΰ΄€ π‘Œ ) is 𝑙 βˆ’ junta 2πœ— β„Ž: = 𝑔(𝑦 π‘Œ ∘ 0 ΰ΄€ π‘Œ ) is 3 βˆ’ far Whp each π‘Œ 𝑗 π‘˜ contains from every 𝑙 βˆ’ Junta with exactly one relevant coordinate respect to 𝒠 We also have witness for each relevant set π‘Œ 𝑗 π‘˜ – that is, π‘˜ ∘ 0 π‘Œ π‘—π‘˜ 𝑔 𝑀 π‘˜ β‰  𝑔 𝑀 π‘Œ π‘—π‘˜

  23. 𝑔(𝑦) is πœ— βˆ’ far from every 𝑙 βˆ’ Junta with 𝑔 is 𝑙 βˆ’ junta respect to 𝒠 β„Ž: = 𝑔(𝑦 π‘Œ ∘ 0 ΰ΄€ π‘Œ ) is 𝑙 βˆ’ junta 2πœ— β„Ž: = 𝑔(𝑦 π‘Œ ∘ 0 ΰ΄€ π‘Œ ) is 3 βˆ’ far Whp each π‘Œ 𝑗 π‘˜ contains from every 𝑙 βˆ’ Junta with exactly one relevant variable respect to 𝒠 π‘˜ ∘ 0 π‘Œ π‘—π‘˜ 𝑔 𝑀 π‘˜ β‰  𝑔 𝑀 π‘Œ π‘—π‘˜ π‘˜ ∘ 𝑦 π‘Œ π‘—π‘˜ ΰ·¨ 𝑔 𝑀 π‘Œ π‘—π‘˜ is equal to 𝑦 𝜐 π‘˜ or 𝑦 𝜐 π‘˜ 𝑃 𝑙 queries 𝑃(log π‘œ) 1 βˆ’ Junta\ 0 βˆ’ Junta π‘˜ ∘ 𝑦 π‘Œ π‘—π‘˜ 𝑔 𝑀 π‘Œ π‘—π‘˜ is (1/15)-close to a literal in {𝑦 𝜐 π‘˜ , 𝑦 𝜐 π‘˜ } ΰ·¨ 𝑃 1 queries according to the uniform distribution

  24. Ξ“ = {𝜐(1), 𝜐(2), … , 𝜐(𝑙 β€² )} β„Ž: = 𝑔(𝑦 π‘Œ ∘ 0 ΰ΄€ π‘Œ ) is either 𝑙 βˆ’ junta that depends on 2πœ— π‘Œ 𝑗 1 , π‘Œ 𝑗 2 , … , π‘Œ 𝑗 𝑙 β€² 3 βˆ’ far from every 𝑙 βˆ’ junta w.r.t. 𝒠 Or Fix any 𝑧 ∈ 0,1 π‘œ 𝑕 = β„Ž(𝑦 Ξ“ ∘ 𝑧 ΰ΄₯ Ξ“ ) is 𝑙 -junta 2πœ— β„Ž(𝑦) is 3 βˆ’ far from any 𝑙 -junta with respect to 𝒠 β„Ž(𝑦) is 𝑙 βˆ’ junta β‰₯ 2πœ— β„Ž 𝑦 = β„Ž(𝑦 Ξ“ ∘ 𝑧 ΰ΄₯ Ξ“ ) 𝑣~𝒠 β„Ž 𝑣 β‰  β„Ž 𝑣 Ξ“ ∘ 𝑧 ΰ΄₯ Pr Ξ“ 3 β‰₯ 2πœ— 𝑣~𝒠,𝑧~𝑉 β„Ž 𝑣 β‰  β„Ž 𝑧 |𝑧 Ξ“ = 𝑣 Ξ“ = 0 Pr 𝑣~𝒠,𝑧~𝑉 β„Ž 𝑣 β‰  β„Ž 𝑣 Ξ“ ∘ 𝑧 ΰ΄₯ Pr Ξ“ 3 𝑙 ΰ·¨ 𝑣~𝒠,𝑧~𝑉 β„Ž 𝑣 β‰  β„Ž 𝑧 |𝑧 Ξ“ = 𝑣 Ξ“ β‰₯ 2πœ— 𝑃 πœ— queries 1 Pr ΰ·¨ 𝑃 πœ— queries 3 Given 𝑣 ? ΰ·¨ 𝑃 𝑙 queries How to draw a random uniform 𝑧 such that 𝑧 Ξ“ = 𝑣 Ξ“ ?

  25. Ξ“ = {𝜐 1 , 𝜐 2 , … , 𝜐(𝑙 β€² )} β„Ž: = 𝑔(𝑦 π‘Œ ∘ 0 ΰ΄€ π‘Œ ) Given 𝑣 ? How to draw a random uniform 𝑧 such that 𝑧 Ξ“ = 𝑣 Ξ“ ? π‘˜ ∘ 𝑦 π‘Œ π‘—π‘˜ 𝑔 𝑀 π‘Œ π‘—π‘˜ is (1/15)-close to a literal in {𝑦 𝜐 π‘˜ , 𝑦 𝜐 π‘˜ } wrt uniform dist. β†’ A procedure that given 𝑣 finds 𝑣 𝜐 π‘˜ with high probability ΰ·¨ 𝑃 1 queries 𝑧 = 𝑧 π‘Œ 𝑗1 ∘ 𝑧 π‘Œ 𝑗2 ∘ β‹― ∘ 𝑧 π‘Œ 𝑗𝑙′ ∘ 𝑧 ΰ΄€ π‘Œ Draw a random uniform 𝑧 π‘Œ 𝑗 π‘˜ ΰ·¨ 𝑃 𝑙 queries If 𝑧 𝜐 π‘˜ = 𝑣 𝜐 π‘˜ then output( 𝑧 π‘Œ π‘—π‘˜ ) Chen, Liu, Servedio, Sheng, Xie 2018 If 𝑧 𝜐 π‘˜ β‰  𝑣 𝜐 π‘˜ then output( 𝑧 π‘Œ π‘—π‘˜ )

Recommend


More recommend