algorithmic coalitional game theory
play

Algorithmic Coalitional Game Theory Lecture 10: Game-Theoretic - PowerPoint PPT Presentation

Algorithmic Coalitional Game Theory Lecture 10: Game-Theoretic Network Centralities Oskar Skibski University of Warsaw 05.05.2020 Centrality Measures Centrality Measure Centrality (measure) is a function : ! ! that assigns to


  1. Algorithmic Coalitional Game Theory Lecture 10: Game-Theoretic Network Centralities Oskar Skibski University of Warsaw 05.05.2020

  2. Centrality Measures Centrality Measure Centrality (measure) is a function 𝐺: 𝐻 ! β†’ ℝ ! that assigns to each node, 𝑗 , in a graph 𝐻 = (π‘Š, 𝐹) a real value 𝐺 & (𝐻) . In other words: what is the importance of a node in a graph? 𝑀 Notation: for a fixed set of vertices π‘Š : β€’ 𝐻 ! is the set of all graphs, and β€’ 𝐷 ! is the set of all centralities. 𝑣 π‘₯ 𝑒

  3. Centrality Measures 3 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  4. Centrality Measures Standard Centralities β€’ Degree Centrality: 𝐸 ' 𝐻 = 𝑣 ∈ π‘Š ∢ 𝑀, 𝑣 ∈ 𝐹 ; β€’ Closeness Centrality: 1 𝐷 ' 𝐻 = βˆ‘ (∈!βˆ– ' 𝑒𝑗𝑑𝑒 𝑀, 𝑣 ; β€’ Betweenness Centrality: π‘ž ∈ Ξ  𝑑, 𝑒 ∢ 𝑀 ∈ π‘ž 𝐢 ' 𝐻 = : , Ξ  𝑑, 𝑒 +,-∈!βˆ– ' where Ξ  𝑑, 𝑒 = set of shortest paths between 𝑑 and 𝑒 ; and many more: Eigenvector, Katz, PageRank… 4 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  5. Game-Theoretic Centralities Game-Theoretic Network Centrality Game-theoretic network centrality is a pair, (𝑠, πœ’) , where: β€’ 𝑠: 𝐻 ! β†’ 2 ! β†’ ℝ is a representation function, β€’ πœ’: 2 ! β†’ ℝ β†’ ℝ ! is a solution concept. and set of all GTCs: π»π‘ˆπ· ! . We will denote πœ’ ∘ 𝑠 as 𝑠, πœ’ Centrality Graph Coalitional Game 𝑠 πœ’ 6 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  6. Game-Theoretic Centralities / : Examples of representation functions 𝑠 𝐻 = 𝑔 . / 𝑇 = 1 if 𝐻[𝑇] is connected, 𝑔 / 𝑇 = 0 , otherwise β€’ 𝑔 . . [Amer & Gimenez 2001] / 𝑇 = 𝐹 𝑇 / βˆ‘ 0∈1[3] πœ•(𝑓) if 𝐻[𝑇] is connected, 𝑔 / 𝑇 = β€’ 𝑔 . . 0 , otherwise [Lindelauf et al. 2013] / 𝑇 = 2( 𝑇 βˆ’ 𝐿 𝐻 𝑇 β€’ 𝑔 ) [Skibski et al. 2019b] . The Shapley value is mostly used as the solution concept. We will discuss only GTCs where the solution concept is a positive semivalue (marked as + in the subscript – formally, for 𝐽 βŠ† π»π‘ˆπ· ! , 𝐽 5 = 𝑠, πœ’ ∈ 𝐽 ∢ πœ’ 𝑗𝑑 𝑏 π‘žπ‘π‘‘π‘—π‘’π‘—π‘€π‘“ π‘‘π‘“π‘›π‘—π‘€π‘π‘šπ‘£π‘“ ). 7 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  7. Game-Theoretic Centralities Semivalues A value is a semivalue if it is of the form: πœ’ & 𝑂, 𝑀 = : 𝛾( 𝑇 ) 𝑀 𝑇 βˆͺ 𝑗 βˆ’ 𝑀 𝑇 , 3βŠ†7βˆ–{&} =>? 𝛾(𝑙) =>? for 𝛾: 0, … , π‘œ βˆ’ 1 β†’ [0,1] such that βˆ‘ :;< = 1 . : We will call a semivalue positive if 𝛾 𝑙 > 0 for every 𝑙 ∈ {0, … , π‘œ βˆ’ 1} . 8 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  8. Game-Theoretic Centralities ? How to characterize GTCs? For 𝐽 βŠ† π»π‘ˆπ· ! , we define 𝐽 = 𝑠, πœ’ ∢ 𝑠, πœ’ ∈ 𝐽 . 𝐷 ! π»π‘ˆπ· ! (𝑠 1 , πœ’ 1 ) (𝑠 2 , πœ’ 2 ) 𝑑 1 [.] 𝐽 ! [𝐽 ! ] (𝑠 3 , πœ’ 3 ) 𝑑 2 (𝑠 4 , πœ’ 4 ) 𝑑 3 (𝑠 5 , πœ’) 9 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  9. General result Characterization of GTCs [Skibski et al. 2018] We have π»π‘ˆπ· ! = 𝐷 ! , i.e., for every centrality 𝐺 there exists (𝑠, πœ’) such that 𝑠, πœ’ = 𝐺 . Proof: On the blackboard. 10 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  10. General result " / ) 𝑠 𝐻 = 𝑔 πœ’(𝑔 𝐻 ! . ' (βˆ…) $ ({𝑀, 𝑣}) $ ({𝑀}) $ ({𝑣}) 𝑔 𝑔 𝑔 𝑔 & ! # " # " # " 𝑀 𝑀 ' ) πœ’ 𝑀 (𝑔 & ! 𝑠 πœ’ 𝑣 𝑣 ' ) πœ’ 𝑣 (𝑔 𝐻 1 & ! ' ({𝑀, 𝑣}) ' (βˆ…) $ ({𝑀}) $ ({𝑣}) 𝑔 𝑔 𝑔 𝑔 # ! # ! & " & " 𝑀 𝑀 ' ) πœ’ ( (𝑔 & " 𝑠 πœ’ 𝑣 𝑣 ' ) πœ’ 𝑣 (𝑔 𝐻 2 & " 11 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  11. General result Sketch of the proof: Take 𝐺 ∈ 𝐷 ! and define 𝑠 𝐻 = 𝑔 / as follows: . / 𝑇 = : 𝑔 𝐺 & 𝐻 . . &∈3 / is additive (non-essential) where every player is a Game 𝑔 . dummy player – the marginal contribution of 𝑗 to every / coalition 𝑇 βŠ† π‘Š βˆ– 𝑗 equals 𝑔 𝑗 = 𝐺 & (𝐻) . Hence, for every . semivalue πœ’ we have: [ 𝑠, πœ’ ] = 𝐺 . 12 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  12. Restrictions on GTCs Consider the following restrictions on the representation function. General Separable Induced 𝑀 𝑣 𝑀 𝑣 𝑀 𝑣 c c c c c c 13 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  13. Restrictions on GTCs … 𝐻 1 𝐻 2 𝐻 3 𝐻 4 𝑀 𝑀 𝑀 𝑀 General … Separable 𝑀 𝑀 𝑀 𝑀 … 𝑀 𝑀 𝑀 𝑀 Induced … 14 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  14. Restrictions on GTCs … 𝐻 6 𝐻 7 𝐻 8 𝐻 5 𝑀 𝑀 𝑀 𝑀 General … Separable 𝑀 𝑀 𝑀 𝑀 … 𝑀 𝑀 𝑀 𝑀 Induced … 15 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  15. Separable GTCs Representation function 𝑠 is separable if for every coalition 𝑇 and every two graphs 𝐻, 𝐻 E : 𝐻 𝑇 = 𝐻 E 𝑇 ∧ 𝐻 π‘Š βˆ– 𝑇 = 𝐻 E π‘Š βˆ– 𝑇 𝑇 = 𝑠 𝐻 E β†’ 𝑠 𝐻 𝑇 . All GTCs with separable 𝑠 : π‘‡π»π‘ˆπ· ! ! ? ? What is π‘‡π»π‘ˆπ· 5 16 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  16. Separable GTCs Characterization of Separable GTCs [Skibski et al. 2018] We have: ! = 𝐺 ∈ 𝐷 ! ∢ 𝐺 𝑑𝑏𝑒𝑗𝑑𝑔𝑗𝑓𝑑 πΊπ‘π‘—π‘ π‘œπ‘“π‘‘π‘‘ . π‘‡π»π‘ˆπ· 5 In other words: β€’ βŠ†: every separable game-theoretic centrality satisfies Fairness β€’ βŠ‡ : every centrality that satisfies Fairness can be obtained as a separable game-theoretic centrality Proof: On the blackboard. 17 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  17. Separable GTCs Sketch of the proof: Before we start… What is the basis of all centralities? For every node 𝑀 ∈ π‘Š and graph π‘Š, 𝑁 ∈ 𝐻 ! we define elementary centrality 𝑓 {(},F as follows: {(},F π‘Š, 𝐹 = a1 if 𝑀 = 𝑣 and 𝑁 = 𝐹, 𝑓 ' 0 otherwise. Clearly, 𝑓 {(},F ∢ π‘Š, 𝑁 ∈ 𝐻 ! , 𝑣 ∈ π‘Š forms a basis. 18 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  18. Separable GTCs Sketch of the proof (continued): We can also express the basis using unanimity centralities. For every node 𝑀 ∈ π‘Š and graph π‘Š, 𝑁 ∈ 𝐻 ! we define unanimity centrality 𝑑 {(},F as follows: {(},F π‘Š, 𝐹 = a1 if 𝑀 = 𝑣 and 𝑁 βŠ† 𝐹, 𝑑 ' 0 otherwise. Clearly, 𝑑 {(},F ∢ π‘Š, 𝑁 ∈ 𝐻 ! , 𝑣 ∈ π‘Š forms a basis. 19 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  19. Separable GTCs Sketch of the proof (continued): We will also use unanimity centralities generalized to sets: for 𝑉 βŠ† π‘Š and π‘Š, 𝑁 ∈ 𝐻 ! we define: G,F π‘Š, 𝐹 = a1 if 𝑀 ∈ 𝑉 and 𝑁 βŠ† 𝐹, 𝑑 ' 0 otherwise. Now, for example, for 𝑀 βˆ— ∈ π‘Š the basis of all centralities is: 𝑑 G,F ∢ π‘Š, 𝑁 ∈ 𝐻 ! , 𝑉 ∈ { 𝑣 ∢ 𝑣 ∈ π‘Š βˆ– 𝑀 βˆ— } βˆͺ {π‘Š} 20 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  20. Separable GTCs Sketch of the proof (continued): 1. Every Separable GTC satisfies Fairness If representation function is separable, then edge {𝑀, 𝑣} affects only values of coalitions that contain either both nodes 𝑀, 𝑣 or none of them. Hence, from Symmetry and Additivity of the Shapley value we get Fairness. 2. Centralities that satisfy Fairness form a vector space Clearly, if 𝐺, 𝐺 E satisfy Fairness, then 𝐺 + 𝐺 + and 𝑑 β‹… 𝐺 also satisfy Fairness. 21 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  21. Separable GTCs Sketch of the proof (continued): 3. Dimension of this vector space is not greater than the number of components in all graphs For every function 𝑕: 2 ! Γ— 𝐻 ! β†’ ℝ there exists at most one centrality index 𝑑 ∈ π’Ÿ ! satisfying Fairness and βˆ‘ '∈3 𝑑 ' 𝑇 = 𝑕 𝑇, 𝐻 for every 𝐻 ∈ 𝐻 ! and 𝑇 ∈ 𝐿 𝐻 . Myerson (1977) proved a version for 𝑕: 2 ! β†’ ℝ , but his proof can be easily translated to get this more general result. 22 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

  22. Separable GTCs Sketch of the proof (continued): 4. The basis of centralities that satisfy Fairness is: 𝐢 IJ&/ = 𝑑 G,F ∢ π‘Š, 𝑁 ∈ 𝐻 ! , 𝑉 ∈ 𝐿 π‘Š, 𝑁 . We need to prove that: β€’ elements from 𝐢 IJ&/ satisfy Fairness β€’ elements from 𝐢 IJ&/ are linearly independent β€’ 𝐢 IJ&/ equals dimension of vector space 23 Oskar Skibski (UW) Algorithmic Coalitional Game Theory

Recommend


More recommend