aiveen finn
play

Aiveen Finn JAI-FEST at Oxford December 2015 Aiveen Finn Contents - PowerPoint PPT Presentation

Aiveen Finn JAI-FEST at Oxford December 2015 Aiveen Finn Contents 1. Objectives 2. Micro-bunch Instabilities 3. Detectors 4. Characterisation 5. Bursting Behaviour 6. Conclusions Aiveen Finn Ultimate Goal: Measure the spectral


  1. Aiveen Finn JAI-FEST at Oxford December 2015 Aiveen Finn

  2. Contents 1. Objectives 2. Micro-bunch Instabilities 3. Detectors 4. Characterisation 5. Bursting Behaviour 6. Conclusions Aiveen Finn

  3. Ultimate Goal: Measure the spectral characteristics of the radiation generated via the micro-bunched beam in a turn by turn regime. Required Step: Required Step: Develop a single shot Characterise detectors for the spectrometer. spectrometer. Aiveen Finn

  4. Micro-bunch instabilities (MBI) 1. Threshold current exceeded 2. Bunch filaments quasi-periodically 3. Emit CSR (mm range in our case) λ CSR < σ z 4. Aiveen Finn

  5. Detector Check List Schottky Barrier Diodes http://www.laserfocusworld.com/articles/2011/02/  mm-wavelength  Room temperature  Low Noise  Excellent Sensitivity  Ultra-fast http://ecetutorials.com Aiveen Finn

  6. Schottky Barrier Diodes • Very versatile Low impedance  faster speed, lower sensitivity High impedance  slower speed, higher sensitivity Aiveen Finn

  7. Schottky Barrier Diodes • Very versatile Low impedance  faster speed, lower sensitivity High impedance  slower speed, higher sensitivity Aiveen Finn

  8. Schottky Barrier Diodes • Very versatile Low impedance  faster speed, lower sensitivity High impedance  slower speed, higher sensitivity • 1/f pink noise ∴ keep away from DC  Use a soft lockin amplifier Aiveen Finn

  9. Frequency Range of Detectors 1. 33-50 GHz 8. Quasi-optical detector • 100-1000 GHz 2. 60-90 GHz 3. 90-140 GHz 4. 140-220 GHz 5. 220-330 GHz 6. 330-500 GHz 7. 500-750 GHz 30 GHz ~ 1 cm Aiveen Finn

  10. Thomas Keating Power Meter • Broadband • All detectors to be compared against it • ‘gold standard’ Aiveen Finn

  11. TK Power Meter 1. Air cell between panes contains thin metal film 2. Absorption of incident beam causes temperature changes  changes in pressure of air cell 3. Changes in pressure detected and recorded • Requires modulated signal • Benefit of TK: can be heated electrically by directly inputting a known modulated signal Aiveen Finn

  12. RF Source • Ka band emitter • Gunn diode Aiveen Finn

  13. RF Source ~ 26.5-40 GHz • Ka band emitter • Gunn diode ~ x2 52-80 GHz ~ 79.5-120 GHz x3 ~ x3 x2 159-240 GHz Aiveen Finn

  14. RF Source Detector Horn Antenna (& multiplier) Aiveen Finn

  15. Power of Signal Received by TK (26-240 GHz) Aiveen Finn

  16. Sensitivity per unit area for DXP22 (33-50 GHz) Sensitivity per unit area for DXP12 (60-90 GHz) Aiveen Finn

  17. Sensitivity per unit area for DET08 (90-140 GHz) Sensitivity per unit area for WR5.1 (140-220 GHz) Aiveen Finn

  18. Sensitivity per unit area for WR3.4 (220-330 GHz) Sensitivity per unit area for QOD (100-1000 GHz) Aiveen Finn

  19. Detector Array Aiveen Finn

  20. e - beam SBD Array Viewport Aiveen Finn

  21. Aiveen Finn

  22. Aiveen Finn

  23. Data Acquisition • Constantly stream data from all 8 channels • Carry out very large FFTs • Only keep ROI – Around revolution frequency of the ring Aiveen Finn

  24. Low Alpha B22 10mA at -330z (Nov 2015) Aiveen Finn 24

  25. Signal (Normal Mode SB 2.5 MV) signal incl sensitivities per area 3 10 2 10 Signal from SBDs, arb. units [dash] 2 [solid] 1 10 Signal from SBDs, W/m 0 10 33-50GHz 60-90GHz 90-140GHz -1 10 140-220GHz 220-330GHz 330-500GHz 500-750GHz 100-1000GHz -2 10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Bunch Current, mA Aiveen Finn 15/11/2015

  26. Noise, Variation (Normal Mode SB 2.5 MV) noise incl sensitivities per area 3 10 Signal from SBDs, arb. units [dash] 2 2 [solid] 10 Signal from SBDs, W/m 1 10 33-50GHz 60-90GHz 90-140GHz 140-220GHz 220-330GHz 330-500GHz 0 10 500-750GHz 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Bunch Current, mA 100-1000GHz Aiveen Finn 15/11/2015

  27. SNR (Normal Mode SB 2.5 MV) SNR incl sensitivities per area 0 10 Signal from SBDs, arb. units [dash] 2 [solid] Signal from SBDs, W/m -1 10 33-50GHz 60-90GHz 90-140GHz 140-220GHz 220-330GHz 330-500GHz 500-750GHz 100-1000GHz -2 10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Bunch Current, mA Aiveen Finn 15/11/2015

  28. Slide 3.4 MV, alpha = -9.9×10 -6 , fs = 675 Hz, I bunch = 63.9 μ A Courtesy -50 mean of max/min amplitude (  W) Ian Martin time (ps) -2 10 0 -4 50 10 1 2 3 4 5 6 0 100 200 300 400 500 600 700 time (ms) frequency (GHz) 1 6 2 mean BPM#4 (mm) bunch centre (ps) streak camera 3 0.5 0 0 -3 0 -6 -2 0 1 2 3 4 5 6 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 burst frequency (kHz) time (ms) 1 8 bunch length (ps) 6 BPM 0.5 4 2 0 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 burst frequency (kHz) time (ms) 33-50 1 0.2 60-90 SBD (  W) 90-140 SBD 0.5 0.1 140-220 220-330 330-500 0 0 500-750 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 burst frequency (kHz) time (ms) 14/4/2015

  29. Slide 3.4 MV, alpha = -9.9×10 -6 , fs = 675 Hz, I bunch = 85.1 μ A Courtesy -50 mean of max/min amplitude (  W) Ian Martin time (ps) -2 10 0 -4 50 10 1 2 3 4 5 6 0 100 200 300 400 500 600 700 time (ms) frequency (GHz) 1 6 2 mean BPM#4 (mm) bunch centre (ps) streak camera 3 0.5 0 0 -3 0 -6 -2 0 1 2 3 4 5 6 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 burst frequency (kHz) time (ms) 1 8 bunch length (ps) 6 BPM 0.5 4 2 0 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 burst frequency (kHz) time (ms) 33-50 1 0.4 60-90 SBD (  W) 90-140 SBD 0.5 0.2 140-220 220-330 330-500 0 0 500-750 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 burst frequency (kHz) time (ms) 14/4/2015

  30. Slide 3.4 MV, alpha = -9.9×10 -6 , fs = 675 Hz, I bunch = 95.9 μ A Courtesy -50 mean of max/min amplitude (  W) Ian Martin time (ps) -2 10 0 -4 50 10 1 2 3 4 5 6 0 100 200 300 400 500 600 700 time (ms) frequency (GHz) 1 6 2 mean BPM#4 (mm) bunch centre (ps) streak camera 3 0.5 0 0 -3 0 -6 -2 0 1 2 3 4 5 6 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 burst frequency (kHz) time (ms) 1 8 bunch length (ps) 6 BPM 0.5 4 2 0 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 burst frequency (kHz) time (ms) 33-50 1 0.4 60-90 SBD (  W) 90-140 SBD 0.5 0.2 140-220 220-330 330-500 0 0 500-750 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 burst frequency (kHz) time (ms) 14/4/2015

  31. Conclusions  Calibration of TK and source has been achieved  Characterisation of detectors has been completed • Further characterisation with – Noise source at RAL Space – THz Laser at RHUL • As always, lots more data analysis! Aiveen Finn

  32. With thanks to G. Rehm, P. Karataev, I. Martin, L. Bobb & the Diagnostics Group at Diamond. Aiveen Finn

  33. www.femto.de Aiveen Finn

  34. Aiveen Finn

  35. Aiveen Finn

  36. Quantification of RF Source Aiveen Finn

  37. Low Alpha B22 10mA at -330z (Nov 2015) Aiveen Finn

  38. Mean over all 8 Channels mean 0.6 50 0.5 0.4 Vertical Position, mm 100 0.3 150 0.2 200 0.1 0 50 100 150 200 Horizontal Position, mm Standard Deviation over all 8 Channels std 0.35 50 0.3 0.25 Vertical Position, mm 100 0.2 150 0.15 0.1 200 0.05 0 50 100 150 200 Horizontal Position, mm Low Alpha B22 10mA at -330z (Nov 2015) Aiveen Finn 39

  39. Mean over all 8 Channels mean 0.6 50 0.5 Mean/Std for all 8 Channels mean/std 0.4 4.5 Vertical Position, mm 100 0.3 4 150 50 0.2 3.5 200 0.1 Vertical Position, mm 3 100 0 50 100 150 200 Horizontal Position, mm Standard Deviation over all 8 Channels 2.5 std 0.35 150 2 50 0.3 1.5 0.25 Vertical Position, mm 100 200 0.2 1 150 0.15 0 50 100 150 200 0.1 Horizontal Position, mm 200 0.05 0 50 100 150 200 Horizontal Position, mm Low Alpha B22 10mA at -330z (Nov 2015) Aiveen Finn 40

  40. Signal (Normal Mode SB 2.5 MV) signal incl sensitivities per area 3 10 QOD 220-330 GHz 2 10 140-220 GHz Signal from SBDs, arb. units [dash] 2 [solid] 90-140 GHz 1 10 Signal from SBDs, W/m 60-90 GHz 33-50 GHz 0 10 33-50GHz 60-90GHz 90-140GHz -1 10 140-220GHz 220-330GHz 330-500GHz 500-750GHz 100-1000GHz -2 10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Bunch Current, mA Aiveen Finn 15/11/2015

  41. Frequency  Wavelength • υ = 3 GHz  λ = 100 mm = 10 cm • υ = 30 GHz  λ = 10 mm = 1 cm • υ = 300 GHz  λ = 1 mm • υ = 3000 GHz  λ = 0.1 mm • υ = 26.5 GHz  λ = 11.3 mm • υ = 40 GHz  λ = 7.5 mm • υ = 52 GHz  λ = 5.8 mm • υ = 75 GHz  λ = 4 mm • υ = 120 GHz  λ = 2.5 mm • υ = 240 GHz  λ = 1.3 mm Aiveen Finn

Recommend


More recommend