advanced machine learning
play

Advanced Machine Learning CS 7140 - Spring 2019 Lecture 24: - PowerPoint PPT Presentation

Advanced Machine Learning CS 7140 - Spring 2019 Lecture 24: Bayesian Optimization Jan-Willem van de Meent Slide credits: Ryan Adams, Nando de Freitas Background: Multi-Armed Bandits Problem: Which machine has highest rate of payout?


  1. Advanced Machine Learning CS 7140 - Spring 2019 Lecture 24: Bayesian Optimization Jan-Willem van de Meent Slide credits: Ryan Adams, Nando de Freitas

  2. Background: Multi-Armed Bandits • Problem: Which machine has highest rate of payout? • Trade-off: Exploration (trying a new machine) vs 
 Exploitation (playing machine with best returns so far) • Regret: Difference between reward of action, and reward 
 of optimal action (with benefit of hindsight)

  3. Background: Multi-Armed Bandits • Problem: Which machine has highest rate of payout? • Trade-off: Exploration (trying a new machine) vs 
 Exploitation (playing machine with best returns so far) • Regret: Difference between reward of action, and reward 
 of optimal action (with benefit of hindsight)

  4. Example: Thompson Sampling Goal: Use A/B testing to optimize button click rate Thompson Sampling Bandit Require : � ; � : hyperparameters of the beta prior 1: Initialize n a ; 0 ¼ n a ; 1 ¼ i ¼ 0 for all a 2: repeat for a ¼ 1 ; . . . ; K do 3: w a � beta ð � þ n a ; 1 ; � þ n a ; 0 Þ 4: ~ 5: end for a i ¼ arg max a ~ 6: w a 7: Observe y i by pulling arm a i if y i ¼ 0 then 8: n a i ; 0 ¼ n a i ; 0 þ 1 9: 10: else n a i ; 1 ¼ n a i ; 1 þ 1 11: 12: end if i ¼ i þ 1 13: 14: until stopping criterion reached

  5. Bayesian Optimization 3 2 current ! 1 best 0 − 1 − 2 − 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Goal: Optimize unknown cost function 
 (continuous version of bandit problem)

  6. Bayesian Optimization 3 2 current ! 1 best 0 − 1 − 2 − 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Goal: Optimize unknown cost function 
 (continuous version of bandit problem)

  7. Bayesian Optimization 3 2 current ! 1 best 0 − 1 − 2 − 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Goal: Optimize unknown cost function 
 (continuous version of bandit problem)

  8. Bayesian Optimization 3 2 current ! 1 best 0 − 1 − 2 − 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Goal: Optimize unknown cost function 
 (continuous version of bandit problem)

  9. Bayesian Optimization 3 2 current ! 1 best 0 − 1 − 2 − 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Goal: Optimize unknown cost function 
 (continuous version of bandit problem)

  10. Bayesian Optimization 3 2 current ! 1 best 0 − 1 − 2 − 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Problem: Which point should we evaluate next?

  11. Bayesian Optimization 3 2 1 0 − 1 − 2 − 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Idea 1: Model uncertainty about objective function

  12. Bayesian Optimization 3 2 1 0 − 1 − 2 − 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Idea 2: Define acquisition function 
 that balances exploration and exploitation

  13. Bayesian Optimization

  14. Bayesian Optimization

  15. Bayesian Optimization

  16. Bayesian Optimization

  17. Bayesian Optimization

  18. Bayesian Optimization

  19. Bayesian Optimization

  20. Intuition: Why does Bayes Opt work? Idea: Use confidence bounds to adaptively eliminate regions in search space that are not likely to contain optimum

  21. Modeling Uncertainty

  22. <latexit sha1_base64="fVB4z3/k8AXCtxB7osjfSKqlHG4=">AGFnicfZTNbtQwEIDd0oUS/lo4conYS4tWVdJWbS9IVEFx1L1T2qWleNMdq0mTmo7/bP8HjwCD4G4IW6IG/A2ONlIbOIR4pGM94Zjxjh3lChfS8P3Pz9xZ69x8sPnQePX7y9NnS8vMTkRWcwDHJkoyfhVhAQhkcSyoTOMs54DRM4DS8eFvaT6+AC5qxI3mbwzDFY0ZjSrA0qtHSXnClbvTH1+4bN8B8nFI2UpVKu/FKJay6TnB5WeDIiY0kaOrkK7EbpDRyjf1Wr46W+t6aVy3XFvxa6KN6HYyWF74EUaKFJgkCRbi3PdyOVSYS0oS0E5QCMgxucBjODciwymIoaqK1W7DeuQPVZwxCYw03BRORYrlxFKWsGhqycQEBt4MWyuHqtwlAkHrOkVptpxghic/BVZioKkwK0Ony3p5U32NoY+OvbuoVwiGrC3/EG5msDYw7AamRnc+Bv7dhMXvA8gX+QV2JlNhwYXJMsTGLTBeB6HNzPgEwUXAoC1FBmKq+r7W24ClqfCq7E8wab7RSQSPB6Yi0sNsZrCy0Go82dNe152FXZhgZyAxB3Zy24aFx1sYbGFDXEL4u0MoTMm5ImGbPqiWfoak5iO2gyw9Q9LrdMzG2OsLVjPunG8wm12MNWZw51OS6zRHn3selzkOXAscx4emuqZwkNKVSqNqubS/K/u9l7O1g+7o5lOU/DNW+tkgSJtVgNs/OnlDCoyZXVtmBjXkTmzauA8xbYH3AJWneO7/9utnCyfqa7635Hzb7u3v1y7eIXqJXaAX5aBvtovfoAB0jgj6jH+gX+t371Pva+9b7PkXn52qfF6ixej/ApkAOwA=</latexit> Predictive Posterior over Functions 3 2 1 0 − 1 − 2 − 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

  23. <latexit sha1_base64="tLc2wN7JTbsGayUlk4RLdDNbju0=">AGA3icfZTNbtQwEIBd6EJZ/lo4clmxl1ZalaRUbY9VUQUnVKr+SfVq5Tizu1ZjJzhO263lI4/AU3BD3IAbPARvg51GYhNHOFI08nzj+bWjLG5CoI/C3fuLnbu3V960H346PGTp8srz07ytJAUjmapPIsIjkTMCxYiqBs0wC4VECp9HFG6c/vQSZs1QcqVkGQ04mgo0ZJcpujZfzUaihzmLe+MezhnvYQXSr9PJTer41V8qa/NSKwNnHLCydpouR+sB+Xq+UJYCX1UrYPRyuIPHKe04CAUTUien4dBpoaSMVoAqaLixwyQi/IBM6tKAiHfKjLzEyvpj0Kh3qcCgWC1sw04TknauptOjiv79KpdQy7rbaHGp3Sgw2U1G3irjpdnEMY1vlMjIdR0kBRh+3TM6Gy9HoQb26aBSIgrItwJBvZrAhMJICpkZ3MQbu34TFbILIF/UOAwF40EAVc05ZyIWONLoObc1geDyAsJLhGNI67oTHGg29Ra1Pqu3heW20xrUAyFoYrM5zCVqoZkH3bSdeNhH9swrKagSEv0qp0mRQtbeGzhQ9KDZDNCaPUJWc6SVHj5jOfock7GvtNkjql67I5M7NWNiXdiNm3Hsynz2MNGZw6NG5d5gkh7lW2fcZqBJCqV7tJdMTVNGcq15Xe+FZM/N/K6pvO9k19KN0/ivS+8UgaJeVg1mvnTyiVcZ1zWbZgE1nHbhvXAmYNsCqwI+17FzZfN1842VgPg/Xw2Z/d696+ZbQC/QSraIQbaNd9A4doGNE0Wf0Hf1CvzufOl86XzvfbtE7C5XNc1RbnZ9/ARGkNDA=</latexit> <latexit sha1_base64="LozS45D0JFnutV5rNRSTfUiIwM=">AGAnicfZRLb9QwEIBd6EJZXi0cuazYA620WiWlanusiqpyLFVfUr2qHGd216rtBNvpy/KNn8Cv4Ia4od7gT/BvSLKR2MQRjpSMPN+8PBNHKWfaBMGfhQcPFzuPHi896T59vzFy+WVyc6yRSFY5rwRJ1FRANnEo4NMxzOUgVERBxOo8sPhf70CpRmiTwytymMBJlINmaUmHzrYnk47mHNRA8buDF2/8CtYpGt4it749YGvcuZNOiVn3draxfL/WAYlKvnC2El9FG1Di5WFu9xnNBMgDSUE63PwyA1I0uUYZSD6+JMQ0roJZnAeS5KIkCPbFmY69W0R+HIjhNpQNKamSVC2Km3mYB6/ouneaBQdXDVpsjW3iJQbOJrFtFwnW7OIZxfshlZjaOeAbOHu7vOhsMNt8PwvUt10AUxBURbgeD/GkCEwUgK2R7YxBubvtMmqmUwz8oKLAiGwUSrmkiBJGxVdA3Xl+PhikzhQUhVgcCdsPnXMePENzm1LfxfPKG2ctriVY9r6J3c5hRaE5dOtBd2+7jzscxuGzRQMacnetNMka2Ezj818SHmQamYIrTEh1Ywn0qtnPEeXczL2g/I5pupx4ZLnf25MPI/ptB1Pp8xjDxudOXTFuMwTRE0EyfuMkxQUMYkqfrprZqacCWa0rfTOt2Ly/1a5vhlsz9WHsnhHkd1zHkjXg5m/ez8CaUqrnNFlS3YRNWxWeNawLQBVgdckPl9FzZvN184WR+GwTD8tNHf2a1uviX0Br1FqyhEW2gHfUQH6BhR9BX9RL/Q786XzrfO986PGfpgobJ5jWqrc/8XaZszVg=</latexit> <latexit sha1_base64="agtxwWGEu/nPnQ5UtKLNHaGVTpw=">AHPXichZRbT9RAFIC7iCvUC6CPvjRuYgA3pEUCPBIMUV8MEm7JzkKm7dntZHtzOoWFyfwzE3+Cz/4A34xvxjd1elncdhqYJs3pOd+5zJzTsWOfJMw0v7Vm7s3ebz+Ym9cfPnr8ZGFx6elxEqXUgSMn8iN6auMEfBLCESPMh9OYAg5sH07s0ZvMfnIBNCFReMiuYugHeBiSAXEwk6rzpZnyIV8GLCegWwYkpAHmFEyFrqRmy74lTAQKr4Gq/o8gtCdMNJOydBj/dyMEhIUAoMx4x8iGog89LJ+V5YgXZaZTsXKTapSNRZnqyu3Je3eFXtURO4aRYJXsphgI2z9UzxXhgvK0Se76aI0aSEifeEvtHdWV8hr+jnix1zcyXoQpWKXS0cu2fL81+Rm7kpAGEzPFxkvQsM2Z9jikjg9CR2kCMXZGeAg9KY4gKTP85kQRsV6aPX5IAoZhE7FjeMgkUV7ijKDk6rW8WRioNW0pbKfbd1zQZ5sWPWyA6HryIWBnM+8Mu7afgqCH7zdFdzsbr7uWutboZQcEvC2ja78qkDQwoQlsj2Rtfa3FaZOKWxD/8hM8OyaiEcOlEQYBlz9AFOKInz0d2MEkpZBvhyA54xJCKHCBSp/crqNp41hwjioF5vNRx6msGyj+R9Wh6bYl0r2KcmDEPG6onjXTOG1gU4VNVYgqEK1XCI05IU6IH4XKfgZTdD4nAzWpP8WUPc5C+vLSc7ESMfa8dgjCntQ68yByMZlmsBUXh2yzyiKgWIW0eynuyTM80lAWMJLu1C9SHi7l7TXk+2J6lBmb9vme0IhHdvPB7N6duqEOtStctkuG7AhrWJF4xrAuAaWB5yR8r6z6rebKhyvr1nmvVxo7OzW958c9pz7YW2rFnalrajvdP2tSPNaX1t/Wr9af1tf2l/b/9o/yzQmVbp80yrPbvf0oKlY=</latexit> Recap: Gaussian Processes Formal View: Prior over Functions Practical View: Generalization of Multivariate Normal

Recommend


More recommend