adaptive coarse spaces and multiple search directions
play

Adaptive Coarse Spaces and Multiple Search Directions: Tools for - PowerPoint PPT Presentation

Adaptive Coarse Spaces and Multiple Search Directions: Tools for Robust Domain Decomposition Algorithms Nicole Spillane Center for Mathematical Modelling at the Universidad de Chile in Santiago. July 9th, 2015 DD23 Jeju Island, Korea


  1. Adaptive Coarse Spaces and Multiple Search Directions: Tools for Robust Domain Decomposition Algorithms Nicole Spillane Center for Mathematical Modelling at the Universidad de Chile in Santiago. July 9th, 2015 – DD23 Jeju Island, Korea

  2. Acknowledgements Collaborators ◮ Pierre Gosselet (CNRS, ENS Cachan) ◮ Frédéric Nataf (CNRS, Université Pierre et Marie Curie) ◮ Daniel J. Rixen (University of Munich) ◮ François-Xavier Roux (ONERA, Université Pierre et Marie Curie) Funding Financial support by CONICYT through project Fondecyt 3150090. Nicole Spillane (U. de Chile) 2 / 33

  3. Balancing Domain Decomposition (BDD): Ku ∗ = f ( K spd) BDD reduces the problem to the interface Γ : Au ∗ , Γ = b , where A := K ΓΓ − K Γ I K − 1 II K I Γ , Ω s Γ s Ω Γ b := f Γ − K Γ I K − 1 II f I . The operator A is a sum of local contributions : N R s ⊤ S s R s , S s := K s I s I s ) − 1 K s Γ s Γ s − K s Γ s I s ( K s I s Γ s , � A = R s : Γ → Γ s . s = 1 The preconditioner H also: J. Mandel. Balancing domain decomposition. N N Comm. Numer. Methods � � R s ⊤ D s R s = I . Engrg. , 9(3):233–241, 1993. R s ⊤ D s S s † D s R s , with H := s = 1 s = 1 N � R s ⊤ D s Ker ( S s ) . The coarse space is range ( U ) := s = 1 Nicole Spillane (U. de Chile) 3 / 33

  4. Illustration of the Problem: Heterogeneous Elasticity N = 81 subdomains, ν = 0 . 4, E 1 = 10 7 and E 2 = 10 12 Young’s modulus E 10 0 10 − 1 Error (log scale) 10 − 2 10 − 3 10 − 4 Metis Partition 10 − 5 10 − 6 0 20 40 60 80 100 120 140 Iterations Problem: We want to design new DD methods with three objectives: ◮ Reliability : robustness and scalability. ◮ Efficiency : adapt automatically to difficulty. ◮ Simplicity : non invasive implementation. Nicole Spillane (U. de Chile) 4 / 33

  5. Illustration of the Problem: Heterogeneous Elasticity N = 81 subdomains, ν = 0 . 4, E 1 = 10 7 and E 2 = 10 12 Young’s modulus E 10 0 10 − 1 Error (log scale) 10 − 2 Global 10 − 3 Local 10 − 4 Simultaneous PPCG 10 − 5 Metis Partition GenEO 10 − 6 10 − 7 0 20 40 60 80 100 120 140 Iterations Problem: We want to design new DD methods with three objectives: ◮ Reliability : robustness and scalability. ◮ Efficiency : adapt automatically to difficulty. ◮ Simplicity : non invasive implementation. Nicole Spillane (U. de Chile) 4 / 33

  6. Contents Adaptive Coarse Spaces (GenEO) Multi Preconditioned CG (Simultaneous BDD) Adaptive Multi Preconditioned CG Nicole Spillane (U. de Chile) 5 / 33

  7. Adaptive Coarse Spaces (GenEO) Multi Preconditioned CG (Simultaneous BDD) Adaptive Multi Preconditioned CG Projected PCG [Nicolaides, 1987 – Dostál, 1988] for Ax ∗ = b preconditioned by H and projection Π ◮ Assume that A , H ∈ R n × n are spd and U ∈ R n × n 0 is full rank, ◮ Define Π := I − U ( U ⊤ AU ) − 1 U ⊤ A . Convergence 1 x 0 = U ( U ⊤ AU ) − 1 U ⊤ b ; � Initial Guess 2 r 0 = b − Ax 0 ; � Initial residual [Kaniel, 66 – Meinardus, 63] 3 z 0 = Hr 0 ; 4 p 0 = Π z 0 ; � Initial search direction � √ κ − 1 � i 5 for i = 0 , 1 , . . . , convergence do � x ∗ − x i � A � 2 √ κ + 1 q i = Ap i ; 6 � x ∗ − x 0 � A α i = ( q ⊤ i p i ) − 1 ( p ⊤ i r i ) ; 7 x i + 1 = x i + α i p i ; � Update approximate solution ◮ κ = λ max 8 , r i + 1 = r i − α i q i ; � Update residual 9 λ min z i + 1 = Hr i + 1 ; � Precondition 10 i p i ) − 1 ( q ⊤ β i = ( q ⊤ ◮ λ max and λ min : i z i + 1 ) ; 11 p i + 1 = Π z i + 1 − β i p i ; � Project and orthogonalize extreme eigenvalues 12 13 end of HA Π excluding 0. 14 Return x i + 1 ; → GenEO is a choice of range ( U ) that guarantees fast convergence. Nicole Spillane (U. de Chile) 6 / 33

  8. Adaptive Coarse Spaces (GenEO) Multi Preconditioned CG (Simultaneous BDD) Adaptive Multi Preconditioned CG Bibliography (1/2) (coarse spaces based on generalized eigenvalue problems) Multigrid M. Brezina, C. Heberton, J. Mandel, and P. Vaněk. Technical Report 140, University of Colorado Denver , April 1999. Additive Schwarz J. Galvis and Y. Efendiev. Multiscale Model. Simul. , 2010. Y. Efendiev, J. Galvis, R. Lazarov, and J. Willems. ESAIM Math. Model. Numer. Anal. , 2012. F. Nataf, H. Xiang, V. Dolean, and N. S. SIAM J. Sci. Comput. , 2011. V. Dolean, F. Nataf, R. Scheichl, and N. S. Comput. Methods Appl. Math. , 2012. N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl. Numer. Math. , 2014. Optimized Schwarz Methods S. Loisel, H. Nguyen, and R. Scheichl. Technical report, submited, 2015. R. Haferssas, P. Jolivet, and F. Nataf. Technical report, Submited, hal-01100926, 2015. Nicole Spillane (U. de Chile) 7 / 33

  9. Adaptive Coarse Spaces (GenEO) Multi Preconditioned CG (Simultaneous BDD) Adaptive Multi Preconditioned CG Bibliography (2/2) (coarse spaces based on generalized eigenvalue problems) Substructuring Methods P.E. Bjørstad, J. Koster and P. Krzyżanowski. Applied Parallel Computing , 2001. J. Mandel and B. Sousedík. Comput. Methods Appl. Mech. Engrg. , 2007. B. Sousedík, J. Šístek, and J. Mandel. Computing , 2013 N. S. and D. J. Rixen. Int. J. Numer. Meth. Engng. , 2013. H. H. Kim and E. T. Chung, Model. Simul., 2015. A. Klawonn, P. Radtke, and O. Rheinbach. DD22 Proceedings , 2014. A. Klawonn, P. Radtke, and O. Rheinbach. SIAM J. Numer. Anal. , 2015. And many other talks at this conference: ◮ Minisymposium on monday: Olof B. Widlund, Clark R. Dohrmann (with Clemens Pechstein), ◮ Pierre Jolivet (HPDDM https://github.com/hpddm ), ◮ Frédéric Nataf’s plenary talk tomorrow ! ◮ Session on friday morning (CT 7) ! Nicole Spillane (U. de Chile) 8 / 33

  10. Adaptive Coarse Spaces (GenEO) Multi Preconditioned CG (Simultaneous BDD) Adaptive Multi Preconditioned CG Adaptive Coarse Space: Strategy (1/5) Relative error bounded w.r.t C / c Prove ( 2 ) Prove ( 1 ) Problem dependant Use trace theorems, Poincaré in- equalities, Korn inequalities... ( 1 ) holds ( 2 ) holds DD method dependant FETI Additive BDD Schwarz ( 1 ) λ min > c if stable decomposition Abstract Framework ( 2 ) λ max < C if local solver is stable ([Toselli, Widlund (2005)]) [N. S., D. J. Rixen, 2013] [ N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, 2014] Nicole Spillane (U. de Chile) 9 / 33

  11. Adaptive Coarse Spaces (GenEO) Multi Preconditioned CG (Simultaneous BDD) Adaptive Multi Preconditioned CG Adaptive Coarse Space: Strategy (2/5) Relative error bounded w.r.t C / c Prove ( 2 ) Prove ( 1 ) Problem dependant Use trace theorems, Poincaré in- equalities, Korn inequalities... ( 1 ) holds ( 2 ) holds DD method dependant FETI Additive BDD Schwarz ( 1 ) λ min > c if stable decomposition Abstract Framework ( 2 ) λ max < C if local solver is stable ([Toselli, Widlund (2005)]) [N. S., D. J. Rixen, 2013] [ N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, 2014] Nicole Spillane (U. de Chile) 10 / 33

  12. Adaptive Coarse Spaces (GenEO) Multi Preconditioned CG (Simultaneous BDD) Adaptive Multi Preconditioned CG Adaptive Coarse Space: Strategy (3/5) Relative error bounded w.r.t C / c Prove ( 2 ) Prove ( 1 ) Make ( 1 ) or ( 2 ) local: In x s ⊤ M s x s � τ x s ⊤ N s x s for all x s . � Problem dependant Use trace theorems, Poincaré in- equalities, Korn inequalities... (Botleneck Estimate) ( 1 ) holds ( 2 ) holds DD method dependant FETI Additive BDD Schwarz ( 1 ) λ min > c if stable decomposition Abstract Framework ( 2 ) λ max < C if local solver is stable ([Toselli, Widlund (2005)]) [N. S., D. J. Rixen, 2013] [ N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, 2014] Nicole Spillane (U. de Chile) 11 / 33

  13. Adaptive Coarse Spaces (GenEO) Multi Preconditioned CG (Simultaneous BDD) Adaptive Multi Preconditioned CG Adaptive Coarse Space: Strategy (4/5) Relative error bounded w.r.t C / c Solve M s x s k N s x s k = λ s k . Prove ( 2 ) Prove ( 1 ) In � botleneck estimate x s ⊤ M s x s � τ x s ⊤ N s x s � Problem dependant ◮ holds in span { x s Use trace theorems, Poincaré in- k ; λ s k � τ } , equalities, Korn inequalities... ◮ does not hold in span { x s k ; λ s k > τ } . ( 1 ) holds ( 2 ) holds DD method dependant FETI Additive BDD Schwarz ( 1 ) λ min > c if stable decomposition Abstract Framework ( 2 ) λ max < C if local solver is stable ([Toselli, Widlund (2005)]) [N. S., D. J. Rixen, 2013] [ N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, 2014] Nicole Spillane (U. de Chile) 12 / 33

Recommend


More recommend