accurate estimates of fine scale reaction zone
play

Accurate Estimates of Fine Scale Reaction Zone Thicknesses in Gas - PowerPoint PPT Presentation

Accurate Estimates of Fine Scale Reaction Zone Thicknesses in Gas Phase Detonations Joseph M. Powers (powers@nd.edu) Samuel Paolucci (paolucci@nd.edu) University of Notre Dame Notre Dame, Indiana 43rd AIAA Aerospace Sciences Meeting and


  1. Accurate Estimates of Fine Scale Reaction Zone Thicknesses in Gas Phase Detonations Joseph M. Powers (powers@nd.edu) Samuel Paolucci (paolucci@nd.edu) University of Notre Dame Notre Dame, Indiana 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada 10-13 January 2005

  2. Motivation • Detailed kinetics models are widely used in detonation simulations. • The finest length scale predicted by such models is usually not clarified and often not resolved. • Tuning computational results to match experiments without first harmonizing with underlying mathematics renders predictions unreliable.

  3. Partial Review • Westbrook, Combust. Sci. Tech. , 1982. • Shepherd, Dynamics of Explosions , 1986. • Mikolaitis, Combust. Sci. Tech. , 1987. • Oran, et al. , Combust. Flame , 1998. • Paolucci, et al. Combust. Theory Model. , 2001. • Hayashi, et al. , Proc. Combust. Institute , 2002. • Law, et al. , J. Propul. Power , 2003. • Powers and Paolucci, AIAA Journal , to appear.

  4. Model: Reactive Euler Equations • one-dimensional • steady • inviscid • detailed Arrhenius kinetics • calorically imperfect ideal gas mixture

  5. Model: Reactive Euler Equations ρu = ρ o D, ρu 2 + p = ρ o D 2 + p o , e + u 2 ρ = e o + D 2 2 + p 2 + p o , ρ o = f i ≡ ˙ dY i ω i M i ρ o D . dx Supplemented by state equations and the law of mass action.

  6. Reduced Model Algebraic reductions lead to a final form of dY i dx = f i ( Y 1 , . . . , Y N − L ) with • N : number of molecular species • L : number of atomic elements

  7. Eigenvalue Analysis of Local Length Scales Local behavior is modelled by d Y dx = J · ( Y − Y ∗ ) + b , Y ( x ∗ ) = Y ∗ , whose solution has the form Y ( x ) = Y ∗ + � P · e Λ ( x − x ∗ ) · P − 1 − I � · J − 1 · b . Here Λ has eigenvalues λ i of Jacobian J in its diagonal. The length scales are given by 1 ℓ i ( x ) = | λ i ( x ) | .

  8. Computational Methods • A standard ODE solver (DLSODE) was used to inte- grate the equations. • Standard IMSL subroutines were used to evaluate the local Jacobians and eigenvalues at every step. • The Chemkin software package was used to evaluate kinetic rates and thermodynamic properties. • Computation time was typically two minutes on a 900 MHz Sun Blade 1000.

  9. Physical System • Hydrogen-air detonation: 2 H 2 + O 2 + 3 . 76 N 2 . • N = 9 molecular species, L = 3 atomic elements, J = 19 reversible reactions. • p o = 1 atm . • T o = 298 K . • Identical to system studied by both Shepherd (1986) and Mikolaitis (1987).

  10. Detailed Kinetics Model j Aj βj Ej Reaction 1 . 70 × 1013 H 2 + O 2 ⇀ ↽ OH + OH 0 . 00 47780 1 1 . 17 × 109 OH + H 2 ⇀ ↽ H 2 O + H 1 . 30 3626 2 5 . 13 × 1016 H + O 2 ⇀ ↽ OH + O − 0 . 82 16507 3 1 . 80 × 1010 O + H 2 ⇀ ↽ OH + H 1 . 00 8826 4 2 . 10 × 1018 H + O 2 + M ⇀ ↽ HO 2 + M − 1 . 00 5 0 6 . 70 × 1019 H + O 2 + O 2 ⇀ ↽ HO 2 + O 2 − 1 . 42 0 6 6 . 70 × 1019 H + O 2 + N 2 ⇀ ↽ HO 2 + N 2 − 1 . 42 7 0 5 . 00 × 1013 OH + HO 2 ⇀ ↽ H 2 O + O 2 0 . 00 1000 8 2 . 50 × 1014 H + HO 2 ⇀ ↽ OH + OH 0 . 00 1900 9 4 . 80 × 1013 O + HO 2 ⇀ ↽ O 2 + OH 0 . 00 1000 10 6 . 00 × 108 OH + OH ⇀ ↽ O + H 2 O 1 . 30 0 11 2 . 23 × 1012 H 2 + M ⇀ ↽ H + H + M 0 . 50 12 92600 1 . 85 × 1011 O 2 + M ⇀ ↽ O + O + M 0 . 50 95560 13 7 . 50 × 1023 H + OH + M ⇀ ↽ H 2 O + M − 2 . 60 14 0 2 . 50 × 1013 H + HO 2 ⇀ ↽ H 2 + O 2 0 . 00 700 15 2 . 00 × 1012 HO 2 + HO 2 ⇀ ↽ H 2 O 2 + O 2 0 . 00 16 0 1 . 30 × 1017 H 2 O 2 + M ⇀ ↽ OH + OH + M 0 . 00 45500 17 1 . 60 × 1012 H 2 O 2 + H ⇀ ↽ HO 2 + H 2 0 . 00 18 3800 1 . 00 × 1013 H 2 O 2 + OH ⇀ ↽ H 2 O + HO 2 0 . 00 1800 19

  11. Mole Fractions versus Distance 0 10 N 2 H 2 H 2 H O O 2 2 • significant evolution at OH −2 10 O O 2 H −4 10 fine length scales x < HO 2 H O −6 10 2 2 X i 10 − 3 cm . OH −8 10 O −10 10 H O 2 2 • results −12 10 agree with −14 10 −5 −4 −3 −2 −1 0 1 10 10 10 10 10 10 10 x (cm) those of Shepherd.

  12. Temperature Profile • Temperature flat in the post-shock induction zone 0 < x < 2 . 6 × 10 − 2 cm . 3500 • Thermal explosion followed 3000 by relaxation to equilibrium at x ∼ 10 0 cm . T (K) 2500 2000 1500 −5 −4 −3 −2 −1 0 1 10 10 10 10 10 10 10 x (cm)

  13. Eigenvalue Analysis: Length Scale Evolution • Finest length scale: 2 10 2 . 3 × 10 − 5 cm . 1 10 0 10 • Coarsest length scale −1 10 3 . 0 × 10 1 cm . (cm) i −2 10 • Finest length scale similar −3 10 −4 to that necessary for 10 −5 10 numerical stability of ODE −5 −4 −3 −2 −1 0 1 10 10 10 10 10 10 10 x (cm) solver.

  14. Influence of Initial Pressure • Induction zone length and −1 finest length scale are 10 sensitive to initial pressure. −2 10 ind • Finest length scale three (cm) −3 10 f orders of magnitude ind , −4 10 f smaller than induction −5 10 zone length. −6 10 0.5 1 1.5 2 2.5 3 p o (atm)

  15. Verification: Comparison with Mikolaitis • Lagrangian calculation allows direct comparison with Mikolaitis’ results. −1 10 • agreement very good. −3 10 −5 10 X i HO 2 −7 10 H −9 OH 10 O H O 2 2 −11 10 H O 2 −13 10 −12 −11 −10 −9 −8 −7 −6 10 10 10 10 10 10 10 t (s)

  16. Grid Convergence • Finest length scale must be resolved to converge at proper order. 0 10 • Results are converging at −2 10 proper order for first and 1.006 First Order −4 10 Explicit Euler ε OH 1 second order −6 10 discretizations. 2.008 −8 10 Second Order Runge-Kutta 1 −10 10 −10 −8 −6 −4 10 10 10 10 ∆ x (cm)

  17. Numerical Stability • Discretizations finer than finest physical length scale are numerically stable. • Discretizations coarser than −5 10 finest physical length scale are numerically unstable. X H −6 10 -4 ∆ x = 2.38 x 10 cm (unstable) -4 ∆ x = 2.00 x 10 cm (stable) −7 10 -5 ∆ x = 1.00 x 10 cm (stable) −4 −3 −2 10 10 10 x (cm)

  18. Examination of Recently Published Results ℓ ind ( cm ) ℓ f ( cm ) ∆ x ( cm ) Ref. Oran, et al. , 1998 1 . 47 × 10 − 1 2 . 17 × 10 − 4 3 . 88 × 10 − 3 Jameson, et al. , 1998 2 . 35 × 10 − 2 4 . 74 × 10 − 5 3 . 20 × 10 − 3 Hayashi, et al. , 2002 1 . 50 × 10 − 2 1 . 23 × 10 − 5 5 . 00 × 10 − 4 Hu, et al. , 2004 1 . 47 × 10 − 1 2 . 17 × 10 − 4 2 . 50 × 10 − 3 Powers, et al. , 2001 1 . 54 × 10 − 2 2 . 76 × 10 − 5 8 . 14 × 10 − 5 Fedkiw, et al. , 1997 1 . 54 × 10 − 2 2 . 76 × 10 − 5 3 . 00 × 10 − 2 5 . 30 × 10 − 3 7 . 48 × 10 − 6 1 . 00 × 10 − 2 Ebrahimi and Merkle, 2002 Sislian, et al. , 1998 1 . 38 × 10 − 1 2 . 23 × 10 − 4 1 . 00 × 10 0 Jeung, et al. , 1998 1 . 80 × 10 − 2 5 . 61 × 10 − 7 5 . 94 × 10 − 2 All are under -resolved, some severely.

  19. Conclusions • Detonation calculations are often under -resolved, by as much as four orders of magnitude. • Equilibrium properties are insensitive to resolution, while transient phenomena can be sensitive. • Sensitivity of results to resolution is not known a priori . • Numerical viscosity stabilizes instabilities. • For a repeatable scientific calculation of detonation, the finest physical scales must be resolved.

  20. Moral You either do detailed kinetics with the proper resolution, or you are fooling yourself and others, in which case you should stick with reduced kinetics!

Recommend


More recommend