a x
play

A X Neutr utrinos inos from om De Decay cay-At At-Res Rest - PowerPoint PPT Presentation

+ + K + A X Neutr utrinos inos from om De Decay cay-At At-Res Rest Daniel Winklehner, MIT NUFACT2017, Uppsala, Sweden, 09/29/2017 Som ome Imp mpor orta tant Fr nt Fronti ontiers ers of of P Particle ticle Physic ysics


  1. π + μ + K + A X Neutr utrinos inos from om De Decay cay-At At-Res Rest Daniel Winklehner, MIT NUFACT2017, Uppsala, Sweden, 09/29/2017

  2. Som ome Imp mpor orta tant Fr nt Fronti ontiers ers of of P Particle ticle Physic ysics • In devising a new experiment, one might be interested in these three frontiers: • Purity • Pure Purity • Devoid of • Well understood spectrum • Intensity • Statistics • S/N • Energy • Specific energy  L/E • Low energy spread Energy Intensity • Etc. • Decay-At-Rest can provide high Intensity, high purity and a well-understood (low-) energy spectrum… 2

  3. Ou Outl tline ine • Decay-At At-Res Rest t - Ov Overvie iew • (A f few) Exp xper erime iments ts • COH OHER ERENT ENT • JS NS 2 JSNS • KPipe pe • DAE DAE δ ALUS ALUS • Is IsoDA DAR • IsoDA DAR: The Anat atomy of a C a Cyclo clotr tron n Proton Driver Daniel Winklehner, MIT NUFACT2017 3

  4. Decay cay-At At-Rest Rest Pr Proce ocesses sses π + μ + K + A X Daniel Winklehner, MIT NUFACT2017 4

  5. De Decay-At At-Rest Rest – Fo Four Ty Types Purity π + PiDAR MuDAR μ + K + KDAR A X IsoDAR Daniel Winklehner, MIT NUFACT2017 5

  6. De Decay-At At-Rest Rest – Prod oductio uction Intensity • Either by protons impinging on a target ( Pi/Mu/KDAR ) 600-3000 MeV protons • Or by neutron capture and subsequent beta-decay ( IsoDAR ) e.g.: Daniel Winklehner, MIT NUFACT2017 6

  7. De Decay-At At-Rest Rest – Prod oductio uction Intensity • Either by protons impinging on a target ( Pi/Mu/KDAR ) 600-3000 MeV protons • Or by neutron capture and subsequent beta-decay ( IsoDAR ) e.g.: 60 MeV protons Daniel Winklehner, MIT NUFACT2017 7

  8. De Decay-At At-Rest Rest – Energy gy Spectra tra Energy π + K + A X μ + Low Energy ( = short baseline) Narrow, sometimes even mono-energetic Daniel Winklehner, MIT NUFACT2017 8

  9. De Decay-At At-Rest Rest – De Dete tectio ction • In order to detect neutrinos we must decide: • The flavor(s) we are looking for • The type of interaction  Charged Current (CC) and Neutral Current (NC) • Some examples of low energy interaction open to DAR neutrinos • NC: Coherent Elastic Neutrino-Nucleus Scattering ( ) • CC: At typical DAR-energies, interact through Inverse Beta Decay (IBD): Want large number of protons available  • Scintillator • Gd-doped water-Cherenkov detector • CC: in Liquid Scintillator (signal from prompt and final state proton + delayed Michel electron) KamLAND Daniel Winklehner, MIT NUFACT2017 9

  10. De Decay-At At-Rest Rest – De Dete tectio ction • In order to detect neutrinos we must decide: • The flavor(s) we are looking for • The type of interaction  Charged Current (CC) and Neutral Current (NC) • Some examples of low energy interaction open to DAR neutrinos • NC: Coherent Elastic Neutrino-Nucleus Scattering ( ) (CEvNS) …spreading the meme… • CC: At typical DAR-energies, interact through Inverse Beta Decay (IBD): Want large number of protons available  • Scintillator • Gd-doped water-Cherenkov detector • CC: in Liquid Scintillator (signal from prompt and final state proton + delayed Michel electron) KamLAND Daniel Winklehner, MIT NUFACT2017 10

  11. De Decay-At At-Rest Rest – Ad Advan antages tages Purity PiDAR/MuDAR/IsoDAR Energy • Known energy shape • Low Energy is nice: • Coherent scattering cross-section is high (compared to other interactions) • (L/E-dependent) oscillation studies • IBD cross-section (for applications) is well known • IBD events (for applications) are easy to record/ID • Backgrounds can be controlled/understood • Sometimes come for free in existing facility (e.g. SNS, MLF) KDAR • 236 MeV , low background • Sometimes come for free in existing facility (e.g. MLF) Daniel Winklehner, MIT NUFACT2017 11

  12. De Decay-At At-Rest Rest – Ch Challe llenges nges Intensity • Isotropic  Lose much 500-3000 MeV protons in unfavorable direction… • Need very intense proton source! • We heard a number of very interesting talks about planned upgrades and studies for future proton drivers, e.g.: • Status of Future High Power Proton Drivers for Neutrino Beams, Mon – Plenary • Upgrade of J-PARC Accelerator and Neutrino Beamline toward 1.3 MW, Mon – WG3 • Accelerator R&D Toward Proton Drivers for Future Particle Accelerators, Tue – WG3 • … • In the second half of this talk, I will present you with another possibility: Cyclotrons • Target design (cooling, activation  maintenance) is issue too. Daniel Winklehner, MIT NUFACT2017 12

  13. (P (Pro roposed) posed) Exp xperime eriments nts π + μ + K + A X Daniel Winklehner, MIT NUFACT2017 13

  14. CO COHE HERENT ENT • Talks during this meeting: • The COHERENT Experiment, Thu: Plenary • COHERENT constraints on non-standard neutrino interactions, Fri: WG5 • COHERENT and the LMA-dark solution, Fri: WG5 • In a nutshell: • Uses neutrinos from PiDAR/MuDAR at Oakridge SNS to measure Coherent Elastic Neutrino Nucleus Scattering (CEvNS) • Several detector in a hallway below target dubbed “neutrino alley” • Has been measured to have low neutron background • 8 mwe overburden • Just recently made the very first measurement of CEvNS in CsI: http://science.sciencemag.org/content/early/2017/08/02/science.aao0990 Daniel Winklehner, MIT NUFACT2017 14

  15. JSNS NS 2 • LSND is THE experiment that drives the high- Δm 2 anomalies. J- PARC’s MLF and ORNL’s SNS are the best (only) places to directly study the LSND anomaly. • Uses PiDAR/MuDAR to test LSND anomaly in a cost-effective and timely way at J-PARC • Aside: KDAR : Collect a large sample (~50k) of mono-energetic 236 MeV muon neutrinos from KDAR for nuclear probe and cross- section measurements. • Production: Daniel Winklehner, MIT NUFACT2017 15

  16. JSNS NS 2 Detection: • Target volume is Gd-loaded liquid scintillator • Phase 0: 17 tons w/ 193 x 8 ’’ PMTs • Future phase: multi-detector (34 t) • Energy resolution • Measures appearance through IBD: Daniel Winklehner, MIT NUFACT2017 16

  17. NS 2 - Spectrum JSNS trum & & Sensitivit itivity (dominant background: intrinsic ) Status: • Obtained Stage 1 (of 2) approval from PAC in 2015 • Secured funding for first 17 ton detector module in 2016 • Submitted TDR to J-PARC PAC (seeking Stage 2 approval) in 2017 • Construction has begun! They expect first data in late-2018 Daniel Winklehner, MIT NUFACT2017 17

  18. KP KPip ipe • Use 236 MeV from KDAR • L/E: With long detector (100- 120 meters), filled with liquid scintillator, one can contain oscillation period for with mass splitting >1 eV 2 • To keep cost down, use industrial plastic chemical storage containers for vessel and instrument with 0.6% photocoverage (120k SiPM’s ) • Can do this since high-energy resolution not required Daniel Winklehner, MIT NUFACT2017 18

  19. KP KPip ipe • Trace out oscillation curve in long detector • High precision disappearance search with minimal systematic uncertainties from cross-section and flux • Cost: 5 M$, Decisive in 6 years of running. Signal : Sensitivities : Daniel Winklehner, MIT NUFACT2017 19

  20. DAE DAE δ AL ALUS US Daniel Winklehner, MIT NUFACT2017 20

  21. DAE DAE δ AL ALUS US DSRC Ion Source LEBT _ ν µ _ _ ν µ ν µ DIC _ ν µ _ _ ν µ 60 MeV/amu ν µ _ ν µ Target 800 MeV/amu not to scale Daniel Winklehner, MIT NUFACT2017 21

  22. DAE DAE δ AL ALUS/ US/IsoD IsoDAR AR IsoDAR Iso DSRC Ion Source LEBT _ ν µ _ _ ν µ ν µ DIC _ ν µ _ _ ν µ 60 MeV/amu ν µ _ ν µ Target 800 MeV/amu not to scale Daniel Winklehner, MIT NUFACT2017 22

  23. IsoD oDAR AR Search for sterile neutrinos through oscillations at short distances and low energy Isotropic source of through decay at rest kton scale detector 16.5 m (e.g. KamLAND) Daniel Winklehner, MIT NUFACT2017 23

Recommend


More recommend