a statistical generalization of the transformed eulerian
play

A Statistical Generalization of the Transformed Eulerian Mean - PowerPoint PPT Presentation

A Statistical Generalization of the Transformed Eulerian Mean Circulation Olivier Pauluis (Courant Institute/NYU) Tiffany Shaw (Columbia University) Frederic Laliberte (U. of Toronto) NSF/SIAM CMG workshop September 16 2011 Washington, DC


  1. A Statistical Generalization of the Transformed Eulerian Mean Circulation Olivier Pauluis (Courant Institute/NYU) Tiffany Shaw (Columbia University) Frederic Laliberte (U. of Toronto) NSF/SIAM CMG workshop September 16 2011 Washington, DC

  2. How to describe the circulation? • This requires some averaging, usual both in time and longitude. • The circulation can be diagnosed by computing the stream function: p surf Stream function wind (kg/s) dp ∫ Ψ ( ϕ , p ) = 2 π v a cos ϕ g p latitude

  3. Hadley cells Ferrel cells 45S 45N Polar cell Equator Polar cell • Eulerian-mean circulation exhibits the ‘classic’ three-cell structure. • But the Ferrel cell is a reverse circulation that transports energy toward the equator.

  4. • BUT the mean meridional circulation depends very strongly on the vertical coordinate which is used for the averaging. ‘moist’ circulation averaged ‘dry’ circulation averaged on surfaces of constant on surfaces of constant equivalent potential temperature potential temperature from Pauluis et al.(2010)

  5. Why the circulation in eulerian and isentropic coordinates are in the opposite direction? v < 0 v > 0 longitude • In the midlatitudes, the flow is highly turbulent: the meridional velocity alternates between poleward and equatorward at all levels.

  6. In the stormtracks: Eulerian-mean circulation v p < 0 at low pressure Isobaric surface v < 0 v > 0 v p > 0 at high pressure longitude • In the midlatitudes, the flow is highly turbulent: the meridional velocity alternates between poleward and equatorward at all levels. • This idealized eddies is associated with a poleward flow at high pressure/low level, and equatorward flow at high level

  7. In the stormtracks: Isentropic circulation ρ θ v > 0 at high θ Potential temperature surface v < 0 v > 0 ρ θ v < 0 at low θ longitude Cold Warm Thickness variations are such that the upper isentropic layer encompass larger fraction of the poleward flow. Such pattern also corresponds to a net poleward energy mass transport.

  8. In the stormtracks: Circulation on moist isentropes Dry isentrope v < 0 v > 0 Moist isentrope longitude Moist air moving poleward • Moist isentropes found in the upper troposphere also intersects the Earth’s surface. • Such situation corresponds to a poleward flow of warm, moist air near the surface.

  9. Circulation on dry isentropes ‘Moist’ branch: additional mass flow on moist isentropes • The global circulation has two poleward components in the midlatitudes: – an upper tropospheric branch of high θ e - θ l ; – an a lower branch of warm, most air with high θ e - low θ l , which ascent into the upper troposphere within the stormtracks. • Mass transport is comparable in each branch.

  10. • The streamfunction in an arbitrary coordinate can be defined as • It is straightforward to compute given 4 dimensional data. • How to recover it if we are only given the time mean circulation and eddy statistics? ?

  11. Transformed Eulerian Mean (TEM) Circulation ζ ( p ) Text TEM residual circulation: Eddy component Eulerian-mean circulation

  12. Transformed Eulerian Mean (TEM) Circulation ζ ( p ) Great, but TEM breaks down Text when is not ζ ( p ) stratified TEM residual circulation: Eddy component Eulerian-mean circulation

  13. The Statistical Transformed Eulerian Mean (STEM) Circulation We introduce a join distribution of the meridional mass transport so that the streamfunction can be written as We assume that at each pressure and latitude, the velocity and obey a Gaussian distribution with the covariance matrix

  14. Under these assumptions, the mean velocity for a given value of is The join distribution follows: with

  15. � � ,mean DJF � � ,eddy DJF 360 360 potential temperature potential temperature 340 340 320 320 300 300 280 280 260 260 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude latitude � � ,STEM DJF � � DJF 360 360 potential temperature potential temperature 340 340 320 320 300 300 280 280 260 260 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude latitude

  16. e ,eddy DJF e ,mean DJF � � � � equiv. potential temperature equiv. potential temperature 360 360 340 340 320 320 300 300 280 280 260 260 − 80 − 60 − 40 − 20 0 20 40 60 80 20 40 60 80 − 80 − 60 − 40 − 20 0 latitude latitude DJF e ,STEM DJF � � � � e equiv. potential temperature equiv. potential temperature 360 360 340 340 320 320 300 300 280 280 260 260 − 80 − 60 − 40 − 20 0 20 40 60 80 20 40 60 80 − 80 − 60 − 40 − 20 0 latitude latitude

  17. e ,eddy,SH DJF e ,eddy,LH DJF � � � � equiv. potential temperature equiv. potential temperature 360 360 340 340 320 320 300 300 280 280 260 260 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude latitude e ,eddy,SH JJA e ,eddy,LH JJA � � � � equiv. potential temperature equiv. potential temperature 360 360 340 340 − − − − − − − −

  18. e ,eddy,SH DJF e ,eddy,LH DJF � � � � equiv. potential temperature equiv. potential temperature 360 360 340 340 320 320 300 300 280 280 260 260 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude latitude e ,eddy,SH JJA e ,eddy,LH JJA � � � � Sensible heat contribution equiv. potential temperature equiv. potential temperature peaks in the midlatitudes 360 360 340 340 320 320 300 300 280 280 260 260 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80

  19. e ,eddy,SH DJF e ,eddy,LH DJF � � � � equiv. potential temperature equiv. potential temperature 360 360 340 340 320 320 300 300 280 280 260 260 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude latitude Latent heat contribution e ,eddy,SH JJA e ,eddy,LH JJA � � � � Sensible heat contribution peaks on the equatorward equiv. potential temperature equiv. potential temperature peaks in the midlatitudes 360 360 side of the stormtracks 340 340 320 320 300 300 280 280 260 260 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80

  20. e ,eddy,SH DJF e ,eddy,LH DJF � � � � equiv. potential temperature equiv. potential temperature 360 360 340 340 320 320 300 300 280 280 260 260 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude latitude Latent heat contribution e ,eddy,SH JJA e ,eddy,LH JJA � � � � Sensible heat contribution peaks on the equatorward equiv. potential temperature equiv. potential temperature peaks in the midlatitudes 360 360 side of the stormtracks 340 340 320 320 Latent heat contribution 300 300 extends far in the tropics 280 280 260 260 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80

  21. e ,eddy,SH DJF e ,eddy,LH DJF � � � � equiv. potential temperature equiv. potential temperature 360 360 340 340 320 320 300 300 280 280 260 260 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude latitude Sensible heat contribution Latent heat contribution e ,eddy,SH JJA e ,eddy,LH JJA � � � � peaks in the midlatitudes peaks on the equatorward equiv. potential temperature equiv. potential temperature 360 360 side of the stormtracks Both contributions overlap 340 340 across the stormtracks, so that 320 320 Latent heat contribution the total circulation is larger 300 300 extends far in the tropics than either component. 280 280 260 260 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80

  22. Relationship between TEM and STEM • It can be shown formally that as the variance goes to 0, the STEM streamfunction converges toward the TEM, i.e:

  23. � � ,STEM DJF variance = 64 K 2 � � ,STEM DJF variance = 16 K 2 360 360 potential temperature potential temperature 340 340 320 320 300 300 280 280 260 260 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude latitude � � ,STEM DJF variance = 4 K 2 � � ,STEM DJF variance = 1 K 2 360 360 potential temperature potential temperature 340 340 320 320 300 300 280 280 260 260 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude latitude

  24. Conclusions • The ‘mean’ atmospheric circulation is highly sensitive to the averaging method. • The STEM circulation extends the TEM circulation to an arbitrary coordinate system by taking advantage of additional eddy statistics. • The TEM circulation corresponds to the small variance limit of the STEM circulation.

Recommend


More recommend