a simple explicit bijection between n 2 gog and magog
play

A simple explicit bijection between ( n , 2 ) Gog and Magog - PowerPoint PPT Presentation

6 6 6 6 6 6 6 6 6 Introduction The bijection A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids Jrmie B ETTINELLI March 7, 2016 Jrmie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog


  1. 6 6 6 6 6 6 6 6 6 Introduction The bijection A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids Jérémie B ETTINELLI March 7, 2016 Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  2. 5 6 6 6 6 6 6 6 6 Introduction The bijection What are Gog and Magog? Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  3. 5 6 6 6 6 6 6 6 6 Introduction The bijection What are Gog and Magog? In the mathematical world, these are combinatorial objects known to be in bijection with other fundamental objects. Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  4. 6 5 6 6 6 6 6 6 6 Introduction The bijection Alternating sign matrices Definition An alternating sign matrix of size n is an n × n matrix with entries in {− 1 , 0 , 1 } such that, on each fixed row or column, the nonzero entries start and end by 1 and alternate between 1 and -1.  0 1 0 0  1 − 1 1 0     0 1 0 0   0 0 0 1 Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  5. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog 0 0 0 0 1 0 0 1 0 0 1 -1 0 1 0 0 1 0 -1 1 0 0 0 1 0 Alternating sign matrices Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  6. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog 0 0 0 0 1 0 0 1 0 0 1 -1 0 1 0 0 1 0 -1 1 0 0 0 1 0 6-vertex model Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  7. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog 0 0 0 0 1 0 0 1 0 0 1 -1 0 1 0 0 1 0 -1 1 0 0 0 1 0 6-vertex model Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  8. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog 0 0 0 0 1 -1 1 0 0 1 0 0 1 -1 0 1 0 0 1 0 -1 1 0 0 0 1 0 6-vertex model Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  9. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog 0 0 0 0 1 -1 1 0 0 1 0 0 1 -1 0 1 0 0 1 0 -1 1 0 0 0 1 0 6-vertex model Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  10. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog 0 0 0 0 1 -1 1 0 0 1 0 0 1 -1 0 1 0 0 0 0 1 0 -1 1 0 0 0 0 0 1 0 6-vertex model Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  11. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog 0 0 0 0 1 0 0 1 0 0 1 -1 0 1 0 0 1 0 -1 1 0 0 0 1 0 6-vertex model Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  12. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog 6-vertex model Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  13. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog 6-vertex model Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  14. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog loop model Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  15. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog even coordinates odd coordinates loop model Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  16. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog loop model Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  17. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog 0 0 0 0 1 0 0 1 0 0 1 -1 0 1 0 0 1 0 -1 1 0 0 0 1 0 Gog Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  18. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog 0 0 0 0 1 0 0 1 0 0 1 -1 0 1 0 0 1 0 -1 1 0 0 0 1 0 Gog Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  19. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog 0 0 0 0 1 0 0 1 0 0 1 -1 0 1 0 0 1 0 0 1 0 0 0 1 0 Gog Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  20. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog 0 0 0 0 1 0 0 1 0 0 1 -1 1 1 0 0 1 0 0 1 0 0 1 1 0 Gog Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  21. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 1 0 Gog Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  22. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog 0 0 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 1 0 Gog Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  23. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog 1 1 0 0 0 5 1 1 1 0 0 4 5 3 4 4 1 0 1 1 0 2 2 3 3 1 1 1 1 2 1 1 0 0 1 1 1 1 1 0 Gog Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  24. 6 6 5 6 6 6 6 6 6 Introduction The bijection Gog 1 1 0 0 0 5 1 1 1 0 0 4 5 3 4 4 1 0 1 1 0 2 2 3 3 1 1 1 1 2 1 1 0 0 1 1 1 1 1 0 Gog Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  25. 6 6 6 5 6 6 6 6 6 Introduction The bijection Magog Totally symmetric self-complementary plane partitions Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  26. 6 6 6 5 6 6 6 6 6 Introduction The bijection Magog Totally symmetric self-complementary plane partitions Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  27. 6 6 6 5 6 6 6 6 6 Introduction The bijection Magog Totally symmetric self-complementary plane partitions Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  28. 6 6 6 5 6 6 6 6 6 Introduction The bijection Magog Non intersecting lattice paths Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  29. 6 6 6 5 6 6 6 6 6 Introduction The bijection Magog Non intersecting lattice paths Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  30. 6 6 6 5 6 6 6 6 6 Introduction The bijection Magog Non intersecting lattice paths Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  31. 6 6 6 5 6 6 6 6 6 Introduction The bijection Magog Non intersecting lattice paths Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  32. 6 6 6 5 6 6 6 6 6 Introduction The bijection Magog + − − + − + + − − − + − − + − − − Magog Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  33. 6 6 6 5 6 6 6 6 6 Introduction The bijection Magog + − − + − + + − − − + − − + − − − Magog Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  34. 6 6 6 5 6 6 6 6 6 Introduction The bijection Magog + − − + − + + − − − + − − + − − − Magog Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  35. 6 6 6 5 6 6 6 6 6 Introduction The bijection Magog + − − + − + + − − − + − − + − − − Magog Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  36. 6 6 6 5 6 6 6 6 6 Introduction The bijection Magog 1 1 2 3 4 4 1 1 2 2 3 − 1 1 1 1 + − 1 1 1 + + − − − + − 1 1 1 − + − − − Magog Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

  37. 6 6 6 5 6 6 6 6 6 Introduction The bijection Magog 1 2 3 4 5 6 1 1 2 3 4 4 1 1 2 2 3 − 1 1 1 1 + − 1 1 1 + + − − − + − 1 1 1 − + − − − Magog Jérémie B ETTINELLI A simple explicit bijection between ( n , 2 ) Gog and Magog trapezoids March 7, 2016

Recommend


More recommend