a path to a 0 1s neutron lifetime
play

A Path to a 0.1s Neutron Lifetime Measurement Using the Beam Method - PowerPoint PPT Presentation

A Path to a 0.1s Neutron Lifetime Measurement Using the Beam Method F. E. Wietfeldt Tulane University The beam neutron lifetime method = dN dt = N neutron decay rate: The beam neutron lifetime method = dN dt = N neutron


  1. A Path to a 0.1s Neutron Lifetime Measurement Using the Beam Method F. E. Wietfeldt Tulane University

  2. The beam neutron lifetime method Γ = − dN dt = N neutron decay rate: τ

  3. The beam neutron lifetime method Γ = − dN dt = N neutron decay rate: τ N = ρ n V det = φ ⎛ ⎞ ⎜ ⎟ A beam L det neutrons in detection volume : V det ⎝ ⎠ v

  4. The beam neutron lifetime method Γ = − dN dt = N neutron decay rate: τ N = ρ n V det = φ ⎛ ⎞ ⎜ ⎟ A beam L det neutrons in detection volume : V det ⎝ ⎠ v φ ⎛ ⎞ τ = A beam L det neutron lifetime: ⎜ ⎟ ⎝ ⎠ Γ v

  5. φ ( v ) τ = A beam L det ∫ for a “white” neutron beam: dv Γ v

  6. φ ( v ) τ = A beam L det ∫ for a “white” neutron beam: dv Γ v v th σ abs = σ th neutron absorption cross section in thin “1/v” counter: v v th = 2200 m/s reference thermal neutron velocity

  7. φ ( v ) τ = A beam L det ∫ for a “white” neutron beam: dv Γ v v th σ abs = σ th neutron absorption cross section in thin “1/v” counter: v v th = 2200 m/s reference thermal neutron velocity φ ( v ) ∫ R n = ε th A beam v th neutron count rate: dv v

  8. φ ( v ) τ = A beam L det ∫ for a “white” neutron beam: dv Γ v v th σ abs = σ th neutron absorption cross section in thin “1/v” counter: v v th = 2200 m/s reference thermal neutron velocity φ ( v ) ∫ R n = ε th A beam v th neutron count rate: dv v

  9. φ ( v ) τ = A beam L det ∫ for a “white” neutron beam: dv Γ v v th σ abs = σ th neutron absorption cross section in thin “1/v” counter: v v th = 2200 m/s reference thermal neutron velocity φ ( v ) ∫ R n = ε th A beam v th neutron count rate: dv v

  10. φ ( v ) τ = A beam L det ∫ for a “white” neutron beam: dv Γ v v th σ abs = σ th neutron absorption cross section in thin “1/v” counter: v v th = 2200 m/s reference thermal neutron velocity φ ( v ) ∫ R n = ε th A beam v th neutron count rate: dv v R p = ε p Γ charged particle count rate:

  11. φ ( v ) τ = A beam L det ∫ for a “white” neutron beam: dv Γ v v th σ abs = σ th neutron absorption cross section in thin “1/v” counter: v v th = 2200 m/s reference thermal neutron velocity φ ( v ) ∫ R n = ε th A beam v th neutron count rate: dv v R p = ε p Γ charged particle count rate: τ = R n ε p L det R p ε th v th

  12. φ ( v ) τ = A beam L det ∫ for a “white” neutron beam: dv Γ v v th σ abs = σ th neutron absorption cross section in thin “1/v” counter: v v th = 2200 m/s reference thermal neutron velocity φ ( v ) ∫ R n = ε th A beam v th neutron count rate: dv v R p = ε p Γ charged particle count rate: τ = R n ε p L det R p ε th v th most challenging

  13. 1400 neutron lifetime results current 1300 1200 neutron lifetime (s) 1100 1000 900 beam method 800 UCN bottle magnetic trap 700 1950 1960 1970 1980 1990 2000 2010 year

  14. 900 neutron lifetime results since 1990 895 890 neutron lifetime (s) 885 880 875 recent revisions beam method UCN bottle 870 1990 1995 2000 2005 2010 year

  15. 900 neutron lifetime results since 1990 895 890 neutron lifetime (s) 885 τ n = 880.0 ± 0.6 s 880 2 = 14.0/6 (3%) χ ν 875 beam method UCN bottle 870 1990 1995 2000 2005 2010 year

  16. 900 neutron lifetime results since 1990 895 τ n = 887.3 ± 2.8 s 890 neutron lifetime (s) 885 880 τ n = 879.6 ± 0.6 s 875 beam method UCN bottle 870 1990 1995 2000 2005 2010 year

  17. 900 neutron lifetime results since 1990 895 τ n = 887.3 ± 2.8 s 890 neutron lifetime (s) 885 Δτ n = 7.7 ± 2.9 s 880 τ n = 879.6 ± 0.6 s 875 beam method UCN bottle 870 1990 1995 2000 2005 2010 year

  18. 900 neutron lifetime results since 1990 895 τ n = 887.3 ± 2.8 s 890 neutron lifetime (s) NIST beam neutron lifetime experiment 885 Δτ n = 7.7 ± 2.9 s 880 τ n = 879.6 ± 0.6 s 875 beam method UCN bottle 870 1990 1995 2000 2005 2010 year

  19. Measurement of the Neutron Lifetime Using a Proton Trap J.S. Nico, M.S. Dewey, and D.M. Gilliam National Institute of Standards and Technology F. E. Wietfeldt Tulane University X. Fei and W.M. Snow Indiana University G.L. Greene University of Tennessee J. Pauwels, R. Eykens, A. Lamberty, and J. Van Gestel Institute for Reference Materials and Measurements, Belgium

  20. NIST Center for Neutron Research Cold Neutron Guide Hall NEW! neutron NG-C high flux interferometer end position - curved SM guide NG6 end position 0.50 nm test beam Fundamental Neutron Physics Program: • 30 postdocs • 31 Ph.D. theses 0.89 nm UCN • 40 graduate students • >50 undergraduate students • 41 collaborating institutions

  21. alpha, triton detector precision proton B = 4.6 T aperture detector neutron beam 6 Li mirror trap electrodes door closed deposit (+800 V) (+800 V)

  22. alpha, triton detector precision proton B = 4.6 T aperture detector neutron beam 6 Li mirror trap electrodes door open deposit (+800 V) (ground)

  23. alpha, triton detector precision proton B = 4.6 T aperture detector neutron beam 6 Li mirror trap electrodes door closed deposit (+800 V) (+800 V)

  24. alpha, triton detector precision proton B = 4.6 T aperture detector neutron beam 6 Li mirror trap electrodes door closed deposit (+800 V) (+800 V)

  25. alpha, triton detector precision proton B = 4.6 T aperture detector neutron beam 6 Li mirror trap electrodes door closed deposit (+800 V) (+800 V) τ = R n ε p L det R p ε th v th

  26. alpha, triton detector precision proton B = 4.6 T aperture detector neutron beam 6 Li mirror trap electrodes door closed deposit (+800 V) (+800 V) τ = R n ε p L det L det = nl + L end R p ε th v th

  27. alpha, triton detector precision proton B = 4.6 T aperture detector neutron beam 6 Li mirror trap electrodes door closed deposit (+800 V) (+800 V) τ = R n ε p L det L det = nl + L end R p ε th v th # trap electrodes

  28. alpha, triton detector precision proton B = 4.6 T aperture detector neutron beam 6 Li mirror trap electrodes door closed deposit (+800 V) (+800 V) τ = R n ε p L det L det = nl + L end R p ε th v th # trap electrodes length of electrode + spacer

  29. alpha, triton detector precision proton B = 4.6 T aperture detector neutron beam 6 Li mirror trap electrodes door closed deposit (+800 V) (+800 V) τ = R n ε p L det L det = nl + L end R p ε th v th total effective # trap electrodes end region length length of electrode + spacer

  30. alpha, triton detector precision proton B = 4.6 T aperture detector neutron beam 6 Li mirror trap electrodes door closed deposit (+800 V) (+800 V) τ = R n ε p L det L det = nl + L end R p ε th v th total effective # trap electrodes end region length length of electrode + spacer ε p ⎛ ⎞ R p ( ) = τ − 1 ⎟ nl + L end ⎜ ε th v th ⎝ ⎠ R n

  31. Proton Trap

  32. 1000 Prot oton on Pulse Height Sp Spectrum 2 Au) (32.5 ( .5 kV; 2 kV; 20 µ µg/cm /cm Au) 100 Counts 10 32.5 keV 1 0 100 200 300 400 500 600 ADC Channel (7.47 ch. = 1 keV)

  33. Proton Arrival Time Spectrum 1000 2 Au) (32.5 kV; 20 µg/cm 3 Electrodes 4 Electrodes 100 5 Electrodes Counts 6 Electrodes 7 Electrodes 8 Electrodes 9 Electrodes 10 Electrodes 10 1 0 100 200 300 400 500 TDC Channel (6.25 ch/µs)

  34. -3 4.0x10 Nor orma malized Prot oton on Cou ounts vs. Trap Length 2 Au) ( (32.5 .5 kV; 2 kV; 20 µ µg/cm /cm Au) 3.5 Proton-Bkdg/Alpha 3.0 2.5 2.0 1.5 2 3 4 5 6 7 8 9 10 11 Electrode Number Fit of R p 40 vs . number 20 R n Residuals 0 trap electrodes -20 -6 -40x10 2 3 4 5 6 7 8 9 10 11 Electrode Number 40 20 Residuals 0 -20 -6 -40x10 12:00 AM 12:00 AM 12:00 AM 12:00 AM 12:00 AM 9/29/00 9/30/00 10/1/00 10/2/00 10/3/00 Date/Time

  35. Lifetime vs. Backscatter 910 905 extrapolated result 886.8 ± 1.2 s measured lifetime (s) 900 (stat. error only) 895 27.5 kV 890 30 kV 32.5 kV 885 880 -3 0 5 10 15 20 25 30x10 backscatter fraction

  36. 1/v neutron counter

  37. 1/v neutron counter neutron detection efficiency: ε th = σ th ( ) ( ) θ x , y ( ) dxdy ∫ ∫ Ω x , y ρ x , y 4 π

  38. 1/v neutron counter neutron detection efficiency: ε th = σ th ( ) ( ) θ x , y ( ) dxdy ∫ ∫ Ω x , y ρ x , y 4 π Si detector solid angle

  39. 1/v neutron counter neutron detection efficiency: ε th = σ th ( ) ( ) θ x , y ( ) dxdy ∫ ∫ Ω x , y ρ x , y 4 π Si detector solid angle areal density of Li foil

  40. 1/v neutron counter neutron detection efficiency: ε th = σ th ( ) ( ) θ x , y ( ) dxdy ∫ ∫ Ω x , y ρ x , y 4 π Si detector solid angle areal density of Li foil neutron beam distribution

  41. Error Budget

  42. Error Budget can be significantly reduced by an absolute calibration of the 1/v neutron counter

Recommend


More recommend