A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization Maicon Marques Alves Joint work with Samara C. Lima Federal University of Santa Catarina, Florian´ opolis. DIMACS Workshop on ADMM and Proximal Splitting Methods in Optimization DIMACS, June 11–13, 2018 A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
Forward-backward splitting In a real Hilbert space H , min x ∈H { f ( x ) + ϕ ( x ) } where ◮ f : H → R is convex and differentiable with a L -Lipschitz continuous gradient: �∇ f ( x ) − ∇ f ( y ) � ≤ L � x − y � ∀ x, y ∈ H . ◮ ϕ : H → R ∪ {∞} is proper, convex and closed with an easily computable proximity operator/resolvent: � � ϕ ( y ) + 1 2 λ � y − x � 2 prox λϕ ( x ) := arg min . y ∈H A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
Forward-backward splitting ◮ ϕ = δ C ⇒ prox λϕ = P C . ◮ The forward-backward/proximal gradient method: x + = prox λϕ ( x − λ ∇ f ( x ) ) , λ > 0 . � �� � � �� � forward backward A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
The problem In a real Hilbert space H , m � min { f i ( x ) + ϕ i ( x ) } x ∈H i =1 where, for all i = 1 , . . . , m , ◮ f i : H → R is convex and differentiable with a L -Lipschitz continuous gradient. ◮ ϕ i : H → R ∪ {∞} is proper, convex and closed with an easily computable proximity operator/resolvent. A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
The problem ◮ Interesting applications (see, e.g., N. He, A. Juditsky and A. Nemirovski, 2015; E. Ryu and W. Yin, 2017). ◮ Under standard regularity conditions, it is equivalent to m � 0 ∈ ( ∇ f i + ∂ϕ i )( x ) . � �� � i =1 =: T i A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
The proximal point method ◮ Monotone inclusion problem: find z ∈ H such that 0 ∈ T ( z ) where T : H ⇒ H is maximal monotone. ◮ Rockafellar (1976): ∞ � � z k − ( λ k T + I ) − 1 z k − 1 � ≤ e k , e k < ∞ . k =1 ◮ Rockafellar (1976): (weak) convergence and applications. A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
The hybrid proximal extragradient (HPE) method ◮ z + = ( λT + I ) − 1 z ⇐ ⇒ v ∈ T ( z + ) , λv + z + − z = 0 . ◮ ε –enlargements (Burachik-Sagastiz´ abal-Svaiter): ∀ v ′ ∈ T ( z ′ ) } . T ε ( z ) := { v ∈ H | � z − z ′ , v − v ′ � ≥ − ε ◮ T ( z ) ⊂ T ε ( z ) . ◮ ∂ ε f ( z ) ⊂ ( ∂f ) ε ( z ) . A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
The hybrid proximal extragradient (HPE) method Problem: 0 ∈ T ( z ) . Hybrid proximal extragradient (HPE) method (Solodov and Svaiter, 1999): (0) Let z 0 ∈ H , σ ∈ [0 , 1) and set k = 1 . (1) Find (˜ z k , v k , ε k ) ∈ H × H × R + and λ k > 0 such that v k ∈ T ε k (˜ z k ) , z k − z k − 1 � 2 + 2 λ k ε k ≤ σ 2 � ˜ z k − z k − 1 � 2 . � λ k v k + ˜ (2) Define z k = z k − 1 − λ k v k , set k ← k + 1 and go to Step 1. End z k = ( λ k T + I ) − 1 z k − 1 . ◮ σ = 0 ⇒ A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
The hybrid proximal extragradient (HPE) method ◮ Some special instances: Forward-backward, Tseng’s modified forward-backward, Korpolevich, ADMM. ◮ Termination criterion (Monteiro-Svaiter, 2010): Given a precision ρ > 0 , find ( z, v ) and ε ≥ 0 such that v ∈ T ε ( z ) , max {� v � , ε } ≤ ρ. ◮ Monteiro and Svaiter (2010): Iteration-complexity; global √ O (1 / k ) pointwise and O (1 /k ) ergodic convergence rates. ◮ A., Monteiro and Svaiter (2016): Regularized HPE method with O ( ρ − 1 log( ρ − 1 )) pointwise iteration-complexity. A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
The hybrid proximal extragradient (HPE) method Theorem (Monteiro and Svaiter, 2010) (a) For any k ≥ 1 , there exists i ∈ { 1 , . . . , k } such that � σ 2 d 2 d 0 1 + σ v i ∈ T ε i (˜ 0 z i ) , � v i � ≤ √ 1 − σ, ε i ≤ 2(1 − σ 2 ) λk . λ k (b) For any k ≥ 1 , √ 1 − σ 2 ) d 2 k � ≤ 2 d 0 k ≤ 2(1 + σ/ k ∈ T ε a v a z a � v a ε a 0 k (˜ k ) , λk , . λk A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
The partial inverse method of Spingarn ◮ Spingarn (1983): find x, y ∈ H such that y ∈ V ⊥ and y ∈ T ( x ) x ∈ V, where V is a closed subspace of H and T : H ⇒ H is maximal monotone. ◮ V = H ⇒ 0 ∈ T ( x ) . A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
The partial inverse method of Spingarn ◮ Spingarn (1983): m � 0 ∈ T i ( x ) . i =1 ◮ It is equivalent to m � y i ∈ T i ( x i ) , y i = 0 , x 1 = x 2 = · · · = x m . i =1 ◮ In this case, V = { ( x 1 , x 2 , . . . , x m ) ∈ H m | x 1 = x 2 = · · · = x m } , V ⊥ = { ( y 1 , y 2 , . . . , y m ) ∈ H m | y 1 + y 2 + · · · + y m = 0 } , T : H m ⇒ H m , ( x 1 , x 2 , . . . , x m ) �→ T 1 ( x 1 ) × T 2 ( x 2 ) × T m ( x m ) . A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
The partial inverse method of Spingarn y ∈ V ⊥ , Problem: x ∈ V, y ∈ T ( x ) . Partial inverse method: (0) Let x 0 ∈ V , y 0 ∈ V ⊥ and set k = 1 . (1) Find ˜ x k , ˜ y k ∈ H and λ k > 0 such that � � 1 x k ) + 1 P V (˜ y k ) + P V ⊥ (˜ y k ) ∈ T P V (˜ P V ⊥ (˜ x k ) , λ k λ k y k + ˜ ˜ x k = x k − 1 + y k − 1 . (2) Define x k = P V (˜ x k ) , y k = P V ⊥ (˜ y k ) , set k ← k + 1 and go to Step 1. End ◮ λ k = 1 x k = ( T + I ) − 1 ( x k − 1 + y k − 1 ) . ⇒ ˜ A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
The partial inverse method of Spingarn ◮ Spingarn (1983): The partial inverse of T w.r.t. V is defined as T V : H ⇒ H , � � v ∈ T V ( z ) ⇐ ⇒ P V ( v ) + P V ⊥ ( z ) ∈ T P V ( z ) + P V ⊥ ( v ) . ◮ In particular, 0 ∈ T V ( z ) ⇐ ⇒ P V ⊥ ( z ) ∈ T ( P V ( z ) ) � �� � � �� � y x and = ( λ k T V + I ) − 1 ( x k − 1 + y k − 1 x k + y k ) . � �� � � �� � z k z k − 1 A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
Spingarn’s operator splitting Problem: 0 ∈ � m i =1 T i ( x ) . Spingarn’s operator splitting: (0) Let ( x 0 , y 1 , 0 , . . . , y m, 0 ) ∈ H m +1 be such that y 1 , 0 + · · · + y m, 0 = 0 and set k = 1 . (1) For each i = 1 , . . . , m , find ˜ x i, k , ˜ y i, k ∈ H such that y i, k ∈ T i (˜ ˜ x i, k ) , y i, k + ˜ ˜ x i, k = x k − 1 + y i,k − 1 . (2) Define m x k = 1 � ˜ x i, k , y i, k = y i, k − 1 + x k − ˜ x i, k for i = 1 , . . . , m, m i =1 set k ← k + 1 and go to step 1. A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
SPDG (Mahey, Oualibouch and Tao, 1995) y ∈ V ⊥ , Problem: x ∈ V, y ∈ T ( x ) . (0) Let x 0 ∈ V , y 0 ∈ V ⊥ , γ > 0 be given and set k = 1 . (1) Find ˜ x k , ˜ y k ∈ H such that y k ∈ T (˜ ˜ x k ) , γ ˜ y k + ˜ x k = x k − 1 + γy k − 1 . (2) Define x k = P V (˜ x k ) , y k = P V ⊥ (˜ y k ) , set k ← k + 1 and go to step 1. End ◮ Fixed point theory: ( x k , γy k ) = J (( x k − 1 , γy k − 1 )) , J firmly nonexp. A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
SPDG (Mahey, Oualibouch and Tao, 1995) ◮ A. and Lima (2017): x k + γy k = (( γT ) V + I ) − 1 ( x k − 1 + γy k − 1 ) and T strongly monotone and Lipschitz ⇒ T V strongly monotone . ◮ Rockafellar (2017): Progressive decoupling algorithm for monotone variational inequalities. A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
Relative-error inexact Spingarn’s operator splitting (A. and Lima, 2017) Problem: 0 ∈ T 1 ( x ) + T 2 ( x ) + · · · + T m ( x ) . (0) Let ( x 0 , y 1 , 0 , . . . , y m, 0 ) ∈ H m +1 be such that y 1 , 0 + · · · + y m, 0 = 0 and σ ∈ [0 , 1[ be given and set k = 1 . (1) For each i = 1 , . . . , m , find ˜ x i, k , ˜ y i, k ∈ H and ε i, k ≥ 0 such that y i, k ∈ T ε i, k ˜ (˜ x i, k ) , γ ˜ y i, k + ˜ x i, k = x k − 1 + γy i,k − 1 , i 2 γε i, k ≤ σ 2 � ˜ x i, k − x k − 1 � 2 . (2) Define m x k = 1 y i, k = y i, k − 1 + 1 � ˜ x i, k , γ ( x k − ˜ x i, k ) for i = 1 , . . . , m, m i =1 set k ← k + 1 and go to step 1. A Parallel Forward-backward Splitting Method for Multiterm Composite Convex Optimization
Recommend
More recommend