a mechanical soundness proof for subtyping over recursive
play

A Mechanical Soundness Proof for Subtyping over Recursive Types - PowerPoint PPT Presentation

A Mechanical Soundness Proof for Subtyping over Recursive Types Timothy Jones, David Pearce Victoria University of Wellington tim@ecs.vuw.ac.nz July 19, 2016 Recursive Types Recursive Types type IntList is { int data, IntList next } | null 1


  1. A Mechanical Soundness Proof for Subtyping over Recursive Types Timothy Jones, David Pearce Victoria University of Wellington tim@ecs.vuw.ac.nz July 19, 2016

  2. Recursive Types Recursive Types type IntList is { int data, IntList next } | null 1

  3. Recursive Types Syntax T ::= Int | T × T | T ∨ T 2

  4. Recursive Types Syntax T ::= Int | T × T | T ∨ T | µ X . T | X Non-empty list of integers: µ X . Int ∨ Int × X 2

  5. Recursive Types De-Bruijn Indices T ::= Int | T × T | T ∨ T | µ T | N Non-empty list of integers: µ Int ∨ Int × 0 3

  6. Recursive Types Syntax data InductiveType (n : N ) : Set where 4

  7. Recursive Types Syntax data InductiveType (n : N ) : Set where Int : InductiveType n 4

  8. Recursive Types Syntax data InductiveType (n : N ) : Set where Int : InductiveType n _ × _ : (A B : InductiveType n) → InductiveType n _ ∨ _ : (A B : InductiveType n) → InductiveType n 4

  9. Recursive Types Syntax data InductiveType (n : N ) : Set where Int : InductiveType n _ × _ : (A B : InductiveType n) → InductiveType n _ ∨ _ : (A B : InductiveType n) → InductiveType n µ _ : (A : InductiveType (suc n)) → InductiveType n 4

  10. Recursive Types Syntax data InductiveType (n : N ) : Set where Int : InductiveType n _ × _ : (A B : InductiveType n) → InductiveType n _ ∨ _ : (A B : InductiveType n) → InductiveType n µ _ : (A : InductiveType (suc n)) → InductiveType n Var : (x : Fin n) → InductiveType n 4

  11. Recursive Types Syntax data InductiveType (n : N ) : Set where Int : InductiveType n _ × _ : (A B : InductiveType n) → InductiveType n _ ∨ _ : (A B : InductiveType n) → InductiveType n µ _ : (A : InductiveType (suc n)) → InductiveType n Var : (x : Fin n) → InductiveType n Non-empty list of integers: µ Int ∨ Int × Var zero 4

  12. Recursive Types Substitution _[_] : ∀ {n} → InductiveType (suc n) → InductiveType n → InductiveType n Int [ A ] = Int (B × C) [ A ] = B [ A ] × C [ A ] (B ∨ C) [ A ] = B [ A ] ∨ C [ A ] ( µ B) [ A ] = µ B [ inc A ] Ref x [ A ] with max? x Ref ._ [ A ] | yes max = A Ref x [ A ] | no ¬ p = Ref (reduce ¬ p) 5

  13. Recursive Types Substitution _[_] : ∀ {n} → InductiveType (suc n) → InductiveType n → InductiveType n Int [ A ] = Int (B × C) [ A ] = B [ A ] × C [ A ] (B ∨ C) [ A ] = B [ A ] ∨ C [ A ] ( µ B) [ A ] = µ B [ inc A ] Ref x [ A ] with max? x Ref ._ [ A ] | yes max = A Ref x [ A ] | no ¬ p = Ref (reduce ¬ p) unfold : Type 1 → Type 0 unfold A = A [ µ A ] 5

  14. Well Formedness Nonsensical Types Equivalent unfolding: type X is X Contractivity: type Ints is Int | Ints 6

  15. Well Formedness Nonsensical Types Equivalent unfolding: µ X . X Contractivity: type Ints is Int | Ints 6

  16. Well Formedness Nonsensical Types Equivalent unfolding: µ X . X Contractivity: µ X . Int ∨ X 6

  17. Well Formedness Nonsensical Types Equivalent unfolding: µ X . X Contractivity: µ X . Int ∨ X A type T is well-formed if every occurrence of a µ -bound variable in the body is separated from its binder by at least one × . 6

  18. Well Formedness Well Formedness data WF {n} (m : Fin (suc n)) : InductiveType n → Set where 7

  19. Well Formedness Well Formedness data WF {n} (m : Fin (suc n)) : InductiveType n → Set where int : WF m Int 7

  20. Well Formedness Well Formedness data WF {n} (m : Fin (suc n)) : InductiveType n → Set where int : WF m Int pair : ∀ {A B} → WF zero A → WF zero B → WF m (A × B) union : ∀ {A B} → WF m A → WF m B → WF m (A ∨ B) 7

  21. Well Formedness Well Formedness data WF {n} (m : Fin (suc n)) : InductiveType n → Set where int : WF m Int pair : ∀ {A B} → WF zero A → WF zero B → WF m (A × B) union : ∀ {A B} → WF m A → WF m B → WF m (A ∨ B) rec : ∀ {A} → WF (suc m) A → WF m ( µ A) 7

  22. Well Formedness Well Formedness data WF {n} (m : Fin (suc n)) : InductiveType n → Set where int : WF m Int pair : ∀ {A B} → WF zero A → WF zero B → WF m (A × B) union : ∀ {A B} → WF m A → WF m B → WF m (A ∨ B) rec : ∀ {A} → WF (suc m) A → WF m ( µ A) ref : ∀ {x} → m ≤ inject 1 x → WF m (Var x) 7

  23. Well Formedness Corresponding Proofs wf_[_] : ∀ {n m A} {B : InductiveType n} → WF (inject 1 m) A → WF m B → WF m (A [ B ]) wf int [ p ] = int wf pair q r [ p ] = pair (wf q [ weaken! p ]) (wf r [ weaken! p ]) wf union q r [ p ] = union (wf q [ p ]) (wf r [ p ]) wf rec q [ p ] = rec (wf q [ wf-inc p ]) wf ref {x} q [ p ] with max? x wf ref q [ p ] | yes max = p wf ref q [ p ] | no ¬ p = wf-reduce q ¬ p 8

  24. Well Formedness Corresponding Proofs wf_[_] : ∀ {n m A} {B : InductiveType n} → WF (inject 1 m) A → WF m B → WF m (A [ B ]) wf int [ p ] = int wf pair q r [ p ] = pair (wf q [ weaken! p ]) (wf r [ weaken! p ]) wf union q r [ p ] = union (wf q [ p ]) (wf r [ p ]) wf rec q [ p ] = rec (wf q [ wf-inc p ]) wf ref {x} q [ p ] with max? x wf ref q [ p ] | yes max = p wf ref q [ p ] | no ¬ p = wf-reduce q ¬ p wf-unfold : ∀ {n m} {A : Type (suc n)} → WF (suc m) A → WF m (A [ µ A ]) wf-unfold p = wf weaken 1 p [ rec p ] 8

  25. Coinduction Coinductive Representation data CoinductiveType : Set where Int : CoinductiveType _ × _ : (A B : ∞ CoinductiveType) → CoinductiveType _ ∨ _ : (A B : CoinductiveType) → CoinductiveType 9

  26. Coinduction Coinductive Representation data CoinductiveType : Set where Int : CoinductiveType _ × _ : (A B : ∞ CoinductiveType) → CoinductiveType _ ∨ _ : (A B : CoinductiveType) → CoinductiveType type : ∞ CoinductiveType → CoinductiveType 9

  27. Coinduction Infinite Unfolding Linking the two representations ∞ unfold : {A : InductiveType 0} → WF zero A → CoinductiveType 10

  28. Coinduction Infinite Unfolding ∞ unfold : {A : InductiveType 0} → WF zero A → CoinductiveType ∞ unfold int = Int ∞ unfold (pair p q) = ∞ unfold p × ∞ unfold q ∞ unfold (union p q) = ∞ unfold p ∨ ∞ unfold q ∞ unfold (rec p) = ∞ unfold (wf-unfold p) ∞ unfold (ref p) = ⊥ -elim (<-bound p) 11

  29. Coinduction Infinite Unfolding ∞ unfold : {A : InductiveType 0} → WF zero A → CoinductiveType ∞ unfold int = Int ∞ unfold (pair p q) = ∞ unfold p × ∞ unfold q ∞ unfold (union p q) = ∞ unfold p ∨ ∞ unfold q ∞ unfold (rec p) = ∞ unfold (wf-unfold p) ∞ unfold (ref p) = ⊥ -elim (<-bound p) 11

  30. Coinduction Infinite Unfolding ∞ unfold : {A : InductiveType 0} → WF zero A → CoinductiveType delay-unfold : {A : InductiveType 0} → WF zero A → ∞ CoinductiveType ∞ unfold int = Int ∞ unfold (pair p q) = ∞ unfold p × ∞ unfold q ∞ unfold (union p q) = ∞ unfold p ∨ ∞ unfold q ∞ unfold (rec p) = ∞ unfold (wf-unfold p) ∞ unfold (ref p) = ⊥ -elim (<-bound p) 11

  31. Coinduction Infinite Unfolding ∞ unfold : {A : InductiveType 0} → WF zero A → CoinductiveType delay-unfold : {A : InductiveType 0} → WF zero A → ∞ CoinductiveType ∞ unfold int = Int ∞ unfold (pair p q) = ∞ unfold p × ∞ unfold q ∞ unfold (union p q) = ∞ unfold p ∨ ∞ unfold q ∞ unfold (rec p) = ∞ unfold (wf-unfold p) ∞ unfold (ref p) = ⊥ -elim (<-bound p) type (delay-unfold p) = ∞ unfold p 11

  32. Coinduction Infinite Unfolding ∞ unfold : {A : InductiveType 0} → WF zero A → CoinductiveType delay-unfold : {A : InductiveType 0} → WF zero A → ∞ CoinductiveType ∞ unfold int = Int ∞ unfold (pair p q) = delay-unfold p × delay-unfold q ∞ unfold (union p q) = ∞ unfold p ∨ ∞ unfold q ∞ unfold (rec p) = ∞ unfold (wf-unfold p) ∞ unfold (ref p) = ⊥ -elim (<-bound p) type (delay-unfold p) = ∞ unfold p 11

  33. Coinduction Infinite Unfolding ∞ unfold : {A : InductiveType 0} → WF zero A → CoinductiveType delay-unfold : {A : InductiveType 0} → WF zero A → ∞ CoinductiveType ∞ unfold int = Int ∞ unfold (pair p q) = delay-unfold p × delay-unfold q ∞ unfold (union p q) = ∞ unfold p ∨ ∞ unfold q ∞ unfold (rec p) = ∞ unfold (wf-unfold p) ∞ unfold (ref p) = ⊥ -elim (<-bound p) type (delay-unfold p) = ∞ unfold p 11

  34. Coinduction Substitution Delay Substitutions must be held until they can be delayed 12

  35. Coinduction Substitution Delay Substitutions must be held until they can be delayed data Substs : (n : N ) → Fin (suc n) → Set where [] : ∀ {n} → Substs n zero _::_ : ∀ {n m} {A : InductiveType n} → WF m A → Substs n m → Substs (suc n) (suc m) 12

  36. Coinduction Infinite Unfolding ∞ unfold ′ : ∀ {n B} → WF (from N n) B → Substs n (from N n) → CoinductiveType 13

  37. Coinduction Infinite Unfolding ∞ unfold ′ : ∀ {n B} → WF (from N n) B → Substs n (from N n) → CoinductiveType apply-substs : ∀ {n} {B : InductiveType n} → WF zero B → Substs n (from N n) → ∞ CoinductiveType 13

  38. Coinduction Infinite Unfolding ∞ unfold ′ : ∀ {n B} → WF (from N n) B → Substs n (from N n) → CoinductiveType apply-substs : ∀ {n} {B : InductiveType n} → WF zero B → Substs n (from N n) → ∞ CoinductiveType ∞ unfold ′ int v = Int ∞ unfold ′ (pair p q) v = apply-substs p v × apply-substs q v ∞ unfold ′ (union p q) v = ∞ unfold ′ p v ∨ ∞ unfold ′ q v ∞ unfold ′ (rec p) v = ∞ unfold ′ p (rec p :: v) ∞ unfold ′ (ref p) v = ⊥ -elim (<-bound p) 13

Recommend


More recommend